498 research outputs found

    Field desorption ion source development for neutron generators

    Full text link
    A new approach to deuterium ion sources for deuterium-tritium neutron generators is being developed. The source is based upon the field desorption of deuterium from the surfaces of metal tips. Field desorption studies of microfabricated field emitter tip arrays have been conducted for the first time. Maximum fields of 30 V/nm have been applied to the array tip surfaces to date, although achieving fields of 20 V/nm to possibly 25 V/nm is more typical. Both the desorption of atomic deuterium ions and the gas phase field ionization of molecular deuterium has been observed at fields of roughly 20 V/nm and 20-30 V/nm, respectively, at room temperature. The desorption of common surface adsorbates, such as hydrogen, carbon, water, and carbon monoxide is observed at fields exceeding ~10 V/nm. In vacuo heating of the arrays to temperatures of the order of 800 C can be effective in removing many of the surface contaminants observed

    Explicit lower and upper bounds on the entangled value of multiplayer XOR games

    Get PDF
    XOR games are the simplest model in which the nonlocal properties of entanglement manifest themselves. When there are two players, it is well known that the bias --- the maximum advantage over random play --- of entangled players can be at most a constant times greater than that of classical players. Recently, P\'{e}rez-Garc\'{i}a et al. [Comm. Math. Phys. 279 (2), 2008] showed that no such bound holds when there are three or more players: the advantage of entangled players over classical players can become unbounded, and scale with the number of questions in the game. Their proof relies on non-trivial results from operator space theory, and gives a non-explicit existence proof, leading to a game with a very large number of questions and only a loose control over the local dimension of the players' shared entanglement. We give a new, simple and explicit (though still probabilistic) construction of a family of three-player XOR games which achieve a large quantum-classical gap (QC-gap). This QC-gap is exponentially larger than the one given by P\'{e}rez-Garc\'{i}a et. al. in terms of the size of the game, achieving a QC-gap of order N\sqrt{N} with N2N^2 questions per player. In terms of the dimension of the entangled state required, we achieve the same (optimal) QC-gap of N\sqrt{N} for a state of local dimension NN per player. Moreover, the optimal entangled strategy is very simple, involving observables defined by tensor products of the Pauli matrices. Additionally, we give the first upper bound on the maximal QC-gap in terms of the number of questions per player, showing that our construction is only quadratically off in that respect. Our results rely on probabilistic estimates on the norm of random matrices and higher-order tensors which may be of independent interest.Comment: Major improvements in presentation; results identica

    Pathogenic Potential to Humans of Bovine Escherichia coli O26, Scotland

    Get PDF
    Escherichia coli O26 and O157 have similar overall prevalences in cattle in Scotland, but in humans, Shiga toxin–producing E. coli O26 infections are fewer and clinically less severe than E. coli O157 infections. To investigate this discrepancy, we genotyped E. coli O26 isolates from cattle and humans in Scotland and continental Europe. The genetic background of some strains from Scotland was closely related to that of strains causing severe infections in Europe. Nonmetric multidimensional scaling found an association between hemolytic uremic syndrome (HUS) and multilocus sequence type 21 strains and confirmed the role of stx<sub>2</sub> in severe human disease. Although the prevalences of E. coli O26 and O157 on cattle farms in Scotland are equivalent, prevalence of more virulent strains is low, reducing human infection risk. However, new data on E. coli O26–associated HUS in humans highlight the need for surveillance of non-O157 enterohemorrhagic E. coli and for understanding stx<sub>2</sub> phage acquisition

    Quantum Breaking Time Scaling in the Superdiffusive Dynamics

    Full text link
    We show that the breaking time of quantum-classical correspondence depends on the type of kinetics and the dominant origin of stickiness. For sticky dynamics of quantum kicked rotor, when the hierarchical set of islands corresponds to the accelerator mode, we demonstrate by simulation that the breaking time scales as τℏ∌(1/ℏ)1/ÎŒ\tau_{\hbar} \sim (1/\hbar)^{1/\mu} with the transport exponent ÎŒ>1\mu > 1 that corresponds to superdiffusive dynamics. We discuss also other possibilities for the breaking time scaling and transition to the logarithmic one τℏ∌ln⁥(1/ℏ)\tau_{\hbar} \sim \ln(1/\hbar) with respect to ℏ\hbar

    Bonding mechanism from the impact of thermally sprayed solid particles

    No full text
    Power particles are mainly in solid state prior to impact on substrates from high velocity oxy-fuel (HVOF) thermal spraying. The bonding between particles and substrates is critical to ensure the quality of coating. Finite element analysis (FEA) models are developed to simulate the impingement process of solid particle impact on substrates. This numerical study examines the bonding mechanism between particles and substrates and establishes the critical particle impact parameters for bonding. Considering the morphology of particles, the shear-instability–based method is applied to all the particles, and the energy-based method is employed only for spherical particles. The particles are given the properties of widely used WC-Co powder for HVOF thermally sprayed coatings. The numerical results confirm that in the HVOF process, the kinetic energy of the particle prior to impact plays the most dominant role in particle stress localization and melting of the interfacial contact region. The critical impact parameters, such as particle velocity and temperature, are shown to be affected by the shape of particles, while higher impact velocity is required for highly nonspherical powder

    Enhancement of the magnetic anisotropy of nanometer-sized Co clusters: influence of the surface and of the inter-particle interactions

    Full text link
    We study the magnetic properties of spherical Co clusters with diameters between 0.8 nm and 5.4 nm (25 to 7500$ atoms) prepared by sequential sputtering of Co and Al2O3. The particle size distribution has been determined from the equilibrium susceptibility and magnetization data and it is compared to previous structural characterizations. The distribution of activation energies was independently obtained from a scaling plot of the ac susceptibility. Combining these two distributions we have accurately determined the effective anisotropy constant Keff. We find that Keff is enhanced with respect to the bulk value and that it is dominated by a strong anisotropy induced at the surface of the clusters. Interactions between the magnetic moments of adjacent layers are shown to increase the effective activation energy barrier for the reversal of the magnetic moments. Finally, this reversal is shown to proceed classically down to the lowest temperature investigated (1.8 K).Comment: 13 figures submitted to Phys. Rev.

    Transference Principles for Log-Sobolev and Spectral-Gap with Applications to Conservative Spin Systems

    Full text link
    We obtain new principles for transferring log-Sobolev and Spectral-Gap inequalities from a source metric-measure space to a target one, when the curvature of the target space is bounded from below. As our main application, we obtain explicit estimates for the log-Sobolev and Spectral-Gap constants of various conservative spin system models, consisting of non-interacting and weakly-interacting particles, constrained to conserve the mean-spin. When the self-interaction is a perturbation of a strongly convex potential, this partially recovers and partially extends previous results of Caputo, Chafa\"{\i}, Grunewald, Landim, Lu, Menz, Otto, Panizo, Villani, Westdickenberg and Yau. When the self-interaction is only assumed to be (non-strongly) convex, as in the case of the two-sided exponential measure, we obtain sharp estimates on the system's spectral-gap as a function of the mean-spin, independently of the size of the system.Comment: 57 page

    Characterization of a Mixed Methanotrophic Culture Capable of Chloroethylene Degradation

    Full text link
    A consortium of methanotrophs cultured from the St. Joseph's aquifer in Schoolcraft, MI, was found to exhibit similar methane consumption rates as pure cultures of methanotrophs. The methanotrophic consortium resides within a portion of the aquifer contaminated with a mixed waste plume of perchloroethylene (PCE) and its reductive dechlorination products from natural attenuation, trichloroethylene (TCE), cis-dichloroethylene (c-DCE), and vinyl chloride (VC). Oxidation kinetics for TCE, c-DCE, and VC were measured for the mixed methanotroph consortium and compared to reported rate parameters for degradation of these chloroethylene compounds by pure methanotrophic cultures. The results demonstrate that the kinetics of chloroethylene oxidation by the Schoolcraft methanotroph population mimic the degradation rates of pure methanotrophic cultures that primarily express particulate methane monooxygenase (pMMO). Molecular and biochemical analyses confirmed that sMMO was not being expressed by these cells. Rather, using competitive reverse transcriptionpolymerase chain reaction, pmoA, a gene encoding one of the polypeptides of the pMMO was found at a level of (1.57 ± 0.10) × 10–17 mol pmoA mRNA/g wet soil in soil slurries and (2.65 ± 0.43) × 10–17 mol pmoA mRNA/ÎŒl in groundwater. No expression of mmoX, a gene encoding one of the polypeptides of the sMMO, was detected.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63398/1/ees.2005.22.177.pd

    Quantization and Compressive Sensing

    Get PDF
    Quantization is an essential step in digitizing signals, and, therefore, an indispensable component of any modern acquisition system. This book chapter explores the interaction of quantization and compressive sensing and examines practical quantization strategies for compressive acquisition systems. Specifically, we first provide a brief overview of quantization and examine fundamental performance bounds applicable to any quantization approach. Next, we consider several forms of scalar quantizers, namely uniform, non-uniform, and 1-bit. We provide performance bounds and fundamental analysis, as well as practical quantizer designs and reconstruction algorithms that account for quantization. Furthermore, we provide an overview of Sigma-Delta (ΣΔ\Sigma\Delta) quantization in the compressed sensing context, and also discuss implementation issues, recovery algorithms and performance bounds. As we demonstrate, proper accounting for quantization and careful quantizer design has significant impact in the performance of a compressive acquisition system.Comment: 35 pages, 20 figures, to appear in Springer book "Compressed Sensing and Its Applications", 201

    Characterising the impact of heatwaves on work-related injuries and illnesses in three Australian cities using a standard heatwave definition- Excess Heat Factor (EHF)

    Get PDF
    BACKGROUND AND AIMS:Heatwaves have potential health and safety implications for many workers, and heatwaves are predicted to increase in frequency and intensity with climate change. There is currently a lack of comparative evidence for the effects of heatwaves on workers' health and safety in different climates (sub-tropical and temperate). This study examined the relationship between heatwave severity (as defined by the Excess Heat Factor) and workers' compensation claims, to define impacts and identify workers at higher risk. METHODS:Workers' compensation claims data from Australian cities with temperate (Melbourne and Perth) and subtropical (Brisbane) climates for the years 2006-2016 were analysed in relation to heatwave severity categories (low and moderate/high severity) using time-stratified case-crossover models. RESULTS:Consistent impacts of heatwaves were observed in each city with either a protective or null effect during heatwaves of low-intensity while claims increased during moderate/high-severity heatwaves compared with non-heatwave days. The highest effect during moderate/high-severity heatwaves was in Brisbane (RR 1.45, 95% CI: 1.42-1.48). Vulnerable worker subgroups identified across the three cities included: males, workers aged under 34 years, apprentice/trainee workers, labour hire workers, those employed in medium and heavy strength occupations, and workers from outdoor and indoor industrial sectors. CONCLUSION:These findings show that work-related injuries and illnesses increase during moderate/high-severity heatwaves in both sub-tropical and temperate climates. Heatwave forecasts should signal the need for heightened heat awareness and preventive measures to minimise the risks to workers.Blesson M. Varghese, Adrian G. Barnett, Alana L. Hansen, Peng Bi, John Nairn, Shelley Rowett, Monika Nitschke, Scott Hanson-Easey, Jane S. Heyworth, Malcolm R. Sim, Dino L. Pisaniell
    • 

    corecore