9 research outputs found

    Compression and intelligence: social environments and communication

    Full text link
    Compression has been advocated as one of the principles which pervades inductive inference and prediction - and, from there, it has also been recurrent in definitions and tests of intelligence. However, this connection is less explicit in new approaches to intelligence. In this paper, we advocate that the notion of compression can appear again in definitions and tests of intelligence through the concepts of `mind-reading¿ and `communication¿ in the context of multi-agent systems and social environments. Our main position is that two-part Minimum Message Length (MML) compression is not only more natural and effective for agents with limited resources, but it is also much more appropriate for agents in (co-operative) social environments than one-part compression schemes - particularly those using a posterior-weighted mixture of all available models following Solomonoff¿s theory of prediction. We think that the realisation of these differences is important to avoid a naive view of `intelligence as compression¿ in favour of a better understanding of how, why and where (one-part or two-part, lossless or lossy) compression is needed.We thank the anonymous reviewers for their helpful comments, and we thank Kurt Kleiner for some challenging and ultimately very helpful questions in the broad area of this work. We also acknowledge the funding from the Spanish MEC and MICINN for projects TIN2009-06078-E/TIN, Consolider-Ingenio CSD2007-00022 and TIN2010-21062-C02, and Generalitat Valenciana for Prometeo/2008/051.Dowe, DL.; Hernández Orallo, J.; Das, PK. (2011). Compression and intelligence: social environments and communication. En Artificial General Intelligence. Springer Verlag (Germany). 6830:204-211. https://doi.org/10.1007/978-3-642-22887-2_21S2042116830Chaitin, G.J.: Godel’s theorem and information. International Journal of Theoretical Physics 21(12), 941–954 (1982)Dowe, D.L.: Foreword re C. S. Wallace. Computer Journal 51(5), 523–560 (2008); Christopher Stewart WALLACE (1933-2004) memorial special issueDowe, D.L.: Minimum Message Length and statistically consistent invariant (objective?) Bayesian probabilistic inference - from (medical) “evidence”. Social Epistemology 22(4), 433–460 (2008)Dowe, D.L.: MML, hybrid Bayesian network graphical models, statistical consistency, invariance and uniqueness. In: Bandyopadhyay, P.S., Forster, M.R. (eds.) Handbook of the Philosophy of Science. Philosophy of Statistics, vol. 7, pp. 901–982. Elsevier, Amsterdam (2011)Dowe, D.L., Hajek, A.R.: A computational extension to the Turing Test. Technical Report #97/322, Dept Computer Science, Monash University, Melbourne, Australia, 9 pp (1997)Dowe, D.L., Hajek, A.R.: A non-behavioural, computational extension to the Turing Test. In: Intl. Conf. on Computational Intelligence & multimedia applications (ICCIMA 1998), Gippsland, Australia, pp. 101–106 (February 1998)Hernández-Orallo, J.: Beyond the Turing Test. J. Logic, Language & Information 9(4), 447–466 (2000)Hernández-Orallo, J.: Constructive reinforcement learning. International Journal of Intelligent Systems 15(3), 241–264 (2000)Hernández-Orallo, J.: On the computational measurement of intelligence factors. In: Meystel, A. (ed.) Performance metrics for intelligent systems workshop, pp. 1–8. National Institute of Standards and Technology, Gaithersburg, MD, U.S.A (2000)Hernández-Orallo, J., Dowe, D.L.: Measuring universal intelligence: Towards an anytime intelligence test. Artificial Intelligence 174(18), 1508–1539 (2010)Hernández-Orallo, J., Minaya-Collado, N.: A formal definition of intelligence based on an intensional variant of Kolmogorov complexity. In: Proc. Intl Symposium of Engineering of Intelligent Systems (EIS 1998), pp. 146–163. ICSC Press (1998)Legg, S., Hutter, M.: Universal intelligence: A definition of machine intelligence. Minds and Machines 17(4), 391–444 (2007)Lewis, D.K., Shelby-Richardson, J.: Scriven on human unpredictability. Philosophical Studies: An International Journal for Philosophy in the Analytic Tradition 17(5), 69–74 (1966)Oppy, G., Dowe, D.L.: The Turing Test. In: Zalta, E.N. (ed.) Stanford Encyclopedia of Philosophy, Stanford University, Stanford (2011), http://plato.stanford.edu/entries/turing-test/Salomon, D., Motta, G., Bryant, D.C.O.N.: Handbook of data compression. Springer-Verlag New York Inc., Heidelberg (2009)Sanghi, P., Dowe, D.L.: A computer program capable of passing I.Q. tests. In: 4th International Conference on Cognitive Science (and 7th Australasian Society for Cognitive Science Conference), vol. 2, pp. 570–575. Univ. of NSW, Sydney, Australia (July 2003)Sayood, K.: Introduction to data compression. Morgan Kaufmann, San Francisco (2006)Scriven, M.: An essential unpredictability in human behavior. In: Wolman, B.B., Nagel, E. (eds.) Scientific Psychology: Principles and Approaches, pp. 411–425. Basic Books (Perseus Books), New York (1965)Searle, J.R.: Minds, brains and programs. Behavioural and Brain Sciences 3, 417–457 (1980)Solomonoff, R.J.: A formal theory of inductive inference. Part I. Information and control 7(1), 1–22 (1964)Sutton, R.S.: Generalization in reinforcement learning: Successful examples using sparse coarse coding. Advances in neural information processing systems, 1038–1044 (1996)Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. The MIT Press, Cambridge (1998)Turing, A.M.: Computing machinery and intelligence. Mind 59, 433–460 (1950)Veness, J., Ng, K.S., Hutter, M., Silver, D.: A Monte Carlo AIXI Approximation. Journal of Artificial Intelligence Research, JAIR 40, 95–142 (2011)Wallace, C.S.: Statistical and Inductive Inference by Minimum Message Length. Springer, Heidelberg (2005)Wallace, C.S., Boulton, D.M.: An information measure for classification. Computer Journal 11(2), 185–194 (1968)Wallace, C.S., Dowe, D.L.: Intrinsic classification by MML - the Snob program. In: Proc. 7th Australian Joint Conf. on Artificial Intelligence, pp. 37–44. World Scientific, Singapore (November 1994)Wallace, C.S., Dowe, D.L.: Minimum message length and Kolmogorov complexity. Computer Journal 42(4), 270–283 (1999); Special issue on Kolmogorov complexityWallace, C.S., Dowe, D.L.: MML clustering of multi-state, Poisson, von Mises circular and Gaussian distributions. Statistics and Computing 10, 73–83 (2000

    Diverse consequences of algorithmic probability

    Get PDF
    We reminisce and discuss applications of algorithmic probability to a wide range of problems in artificial intelligence, philosophy and technological society. We propose that Solomonoff has effectively axiomatized the field of artificial intelligence, therefore establishing it as a rigorous scientific discipline. We also relate to our own work in incremental machine learning and philosophy of complexity. © 2013 Springer-Verlag Berlin Heidelberg

    Proiphys infundibularis (Amaryllidaceae), a new species from the Townsville region of Queensland

    No full text
    Jones, D.L. & Dowe, J.L. (2001). Proiphys infundibularis (Amaryllidaceae), a new species from the Townsville region of Queensland. Austrobaileya 6 (1): 121- 126. Proiphys in Australia comprises four species, P.amhoinensis (L.) Herbert, P.cunninghamii(Aiton ex Lindl.) Mabb., P. albo(R.Br.) Mabb. and P.infundibularis D.L Jones & Dowe sp. nov., all occurring in eastern Queensland with P. alba also found in northern Western Australia and P. cunninghamii in northern New South Wales. A key is provided for identification of the Australian species of the genus. Three of the four species (not including P.alba) are illustrated. Notes on the habitat and ecology of P. infundibularis are included

    Algorithmic probability and friends

    No full text
    International audience<p>The human mind is known to be sensitive to complexity. For instance, the visual system reconstructs hidden parts of objects following a principle of maximum simplicity. We suggest here that higher cognitive processes, such as the selection of relevant situations, are sensitive to variations of complexity. Situations are relevant to human beings when they appear simpler to describe than to generate. This definition offers a predictive (i.e. falsifiable) model for the selection of situations worth reporting (interestingness) and for what individuals consider an appropriate move in conversation. </p

    Сельская новь. 2017. № 30

    Get PDF
    There are writers in both metaphysics and algorithmic information theory (AIT) who seem to think that the latter could provide a formal theory of the former. This paper is intended as a step in that direction. It demonstrates how AIT might be used to define basic metaphysical notions such as *object* and *property* for a simple, idealized world. The extent to which these definitions capture intuitions about the metaphysics of the simple world, times the extent to which we think the simple world is analogous to our own, will determine a lower bound for basing a metaphysics for *our* world on AIT
    corecore