171 research outputs found

    Magnesium in plants: uptake, distribution, function, and utilization by man and animals

    Get PDF
    Plants provide man with his primary needs--nutrition, clothing, and shelter as well as medicinal, recreational, and esthestic benefits. There are over 500,000 species of plants distributed over the earth. Magnesium is an essential nutrient for plants and animals. The criteria for the essentiality of elements for plants are as follows: (1) the plant will be unable to complete its life cycle if the element is removed from the plant nutrient medium; (2) the element has a specific function which cannot be replaced by other elements; or (3) the element is a necessary component of an essential metabolite [1]. The relative abundance of Mg in plant life is less than N, K, Ca, and similar to S and P. Intensive crop production practices with fertilizers, improved plant cultivars, and best management practices are commonly used today. These intense cultural practices may mean an increasing frequency of Mg deficiencies as well as the need for knowledge on economically sound practices to prevent such deficiencies. Plants are an important source of Mg to satisfy human and animal requirements, and factors affecting Mg bioavailability need to be identified. The objective of this chapter is to assess the importance, distribution, function, and utilization of Mg in plant growth and metabolism and in grazing ruminant animal production and human health

    Developing a dementia-specific preference-­based quality of life measure (AD-5D) in Australia: a valuation study protocol

    Get PDF
    Introduction: Generic instruments for assessing health-related quality of life may lack the sensitivity to detect changes in health specific to certain conditions, such as dementia. The QOL-AD is a widely used and well validated condition-specific instrument for assessing health-related quality of life for people living with dementia, but it does not enable the calculation of Quality Adjusted Life Years (QALYs), the basis of cost utility analysis. This study will generate a preference-based scoring algorithm for a health state classification system (the AD-5D) derived from the QOL-AD. Methods and analysis: Discrete choice experiments with duration (DCETTO) and best-worst scaling (BWS) health state valuation tasks will be administered to a representative sample of 2,000 members of the Australian general population via an online survey and to 250 dementia dyads (250 people with dementia and their carers) via face-to-face interview. A multinomial (conditional) logistic framework will be used to analyse responses and produce the utility algorithm for the AD-5D. Ethics and dissemination: The algorithms developed will enable prospective and retrospective economic evaluation of any treatment or intervention targeting people with dementia where the QOL-AD has been administered and will be available online. Results will be disseminated through journals that publish health economics articles and through professional conferences. The study has ethical approval

    (n,p) Studies at 120 MeV

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY 87-1440

    Duality Versus Supersymmetry and Compactification

    Get PDF
    We study the interplay between T-duality, compactification and supersymmetry. We prove that when the original configuration has unbroken space-time supersymmetries, the dual configuration also does if a special condition is met: the Killing spinors of the original configuration have to be independent on the coordinate which corresponds to the isometry direction of the bosonic fields used for duality. Examples of ``losers" (T-duals are not supersymmetric) and ``winners" (T-duals are supersymmetric) are given.Comment: LaTeX file, 19 pages, U. of Groningen Report UG-8/94, Stanford U. Report SU-ITP-94-19, QMW College Report QMW-PH-94-1

    The road to deterministic matrices with the restricted isometry property

    Get PDF
    The restricted isometry property (RIP) is a well-known matrix condition that provides state-of-the-art reconstruction guarantees for compressed sensing. While random matrices are known to satisfy this property with high probability, deterministic constructions have found less success. In this paper, we consider various techniques for demonstrating RIP deterministically, some popular and some novel, and we evaluate their performance. In evaluating some techniques, we apply random matrix theory and inadvertently find a simple alternative proof that certain random matrices are RIP. Later, we propose a particular class of matrices as candidates for being RIP, namely, equiangular tight frames (ETFs). Using the known correspondence between real ETFs and strongly regular graphs, we investigate certain combinatorial implications of a real ETF being RIP. Specifically, we give probabilistic intuition for a new bound on the clique number of Paley graphs of prime order, and we conjecture that the corresponding ETFs are RIP in a manner similar to random matrices.Comment: 24 page

    On the `Stationary Implies Axisymmetric' Theorem for Extremal Black Holes in Higher Dimensions

    Full text link
    All known stationary black hole solutions in higher dimensions possess additional rotational symmetries in addition to the stationary Killing field. Also, for all known stationary solutions, the event horizon is a Killing horizon, and the surface gravity is constant. In the case of non-degenerate horizons (non-extremal black holes), a general theorem was previously established [gr-qc/0605106] proving that these statements are in fact generally true under the assumption that the spacetime is analytic, and that the metric satisfies Einstein's equation. Here, we extend the analysis to the case of degenerate (extremal) black holes. It is shown that the theorem still holds true if the vector of angular velocities of the horizon satisfies a certain "diophantine condition," which holds except for a set of measure zero.Comment: 30pp, Latex, no figure

    Wavy Strings: Black or Bright?

    Get PDF
    Recent developments in string theory have brought forth a considerable interest in time-dependent hair on extended objects. This novel new hair is typically characterized by a wave profile along the horizon and angular momentum quantum numbers l,ml,m in the transverse space. In this work, we present an extensive treatment of such oscillating black objects, focusing on their geometric properties. We first give a theorem of purely geometric nature, stating that such wavy hair cannot be detected by any scalar invariant built out of the curvature and/or matter fields. However, we show that the tidal forces detected by an infalling observer diverge at the `horizon' of a black string superposed with a vibration in any mode with l1l \ge 1. The same argument applied to longitudinal (l=0l=0) waves detects only finite tidal forces. We also provide an example with a manifestly smooth metric, proving that at least a certain class of these longitudinal waves have regular horizons.Comment: 45 pages, latex, no figure

    Evolution of whole-body enantiomorphy in the tree snail genus Amphidromus

    Get PDF
    Diverse animals exhibit left–right asymmetry in development. However, no example of dimorphism for the left–right polarity of development (whole-body enantiomorphy) is known to persist within natural populations. In snails, whole-body enantiomorphs have repeatedly evolved as separate species. Within populations, however, snails are not expected to exhibit enantiomorphy, because of selection against the less common morph resulting from mating disadvantage. Here we present a unique example of evolutionarily stable whole-body enantiomorphy in snails. Our molecular phylogeny of South-east Asian tree snails in the genus Amphidromus indicates that enantiomorphy has likely persisted as the ancestral state over a million generations. Enantiomorphs have continuously coexisted in every population surveyed spanning a period of 10 years. Our results indicate that whole-body enantiomorphy is maintained within populations opposing the rule of directional asymmetry in animals. This study implicates the need for explicit approaches to disclosure of a maintenance mechanism and conservation of the genus

    The MACHO Project 2nd Year LMC Microlensing Results and Dark Matter Implications

    Full text link
    The MACHO Project is searching for galactic dark matter in the form of massive compact halo objects (Machos). Millions of stars in the Large Magellanic Cloud (LMC), Small Magellanic Cloud (SMC), and Galactic bulge are photometrically monitored in an attempt to detect rare gravitational microlensing events caused by otherwise invisible Machos. Analysis of two years of photometry on 8.5 million stars in the LMC reveals 8 candidate microlensing events, far more than the 1\sim1 event expected from lensing by low-mass stars in known galactic populations. From these eight events we estimate the optical depth towards the LMC from events with 2 < \that < 200 days to be \tau_2^{200} \approx 2.9 ^{+1.4}_{-0.9} \ten{-7}. This exceeds the optical depth of 0.5\ten{-7} expected from known stars and is to be compared with an optical depth of 4.7\ten{-7} predicted for a ``standard'' halo composed entirely of Machos. The total mass in this lensing population is \approx 2^{+1.2}_{-0.7} \ten{11} \msun (within 50 kpc from the Galactic center). Event timescales yield a most probable Macho mass of 0.5^{+0.3}_{-0.2}\msun, although this value is quite model dependent.Comment: 10 pages, 6 epsf figures and style file included, 451k, also at http://wwwmacho.mcmaster.ca/Pubs/Pubs.html; To appear in the Proceedings of "Sources and Detection of Dark Matter in the Universe", Santa Monica, CA, Feb., 199
    corecore