1,569 research outputs found
‘‘Lozenge’’ contour plots in scattering from polymer networks - reply
A Reply to the Comment by S. Westermann, et al
Small angle neutron scattering observation of chain retraction after a large step deformation
The process of retraction in entangled linear chains after a fast nonlinear stretch was detected from time-resolved but quenched small angle neutron scattering (SANS) experiments on long, well-entangled polyisoprene chains. The statically obtained SANS data cover the relevant time regime for retraction, and they provide a direct, microscopic verification of this nonlinear process as predicted by the tube model. Clear, quantitative agreement is found with recent theories of contour length fluctuations and convective constraint release, using parameters obtained mainly from linear rheology. The theory captures the full range of scattering vectors once the crossover to fluctuations on length scales below the tube diameter is accounted for
Design of linear block copolymers and ABC star terpolymers that produce two length scales at phase separation
The dataset contains the data for generating the figures in the paper. There are two models: a linear block copolymer (with three variants) and an ABC star terpolymer. For the linear chains, we give the height or heights of the maxima in the structure function, and the ratio of the wavenumbers where there are two maxima. For the ABC star model, we give csv files containing the (x,y) coordinates of the lines in figure 8, for each specified ratio of wavenumbers and N chi values
Interacting Open Wilson Lines in Noncommutative Field Theories
In noncommutative field theories, it was known that one-loop effective action
describes propagation of non-interacting open Wilson lines, obeying the flying
dipole's relation. We show that two-loop effective action describes cubic
interaction among `closed string' states created by open Wilson lines. Taking
d-dimensional noncommutative [\Phi^3] theory as the simplest setup, we compute
nonplanar contribution at low-energy and large noncommutativity limit. We find
that the contribution is expressible in a remarkably simple cubic interaction
involving scalar open Wilson lines only and nothing else. We show that the
interaction is purely geometrical and noncommutative in nature, depending only
on sizes of each open Wilson line.Comment: v1: 27 pages, Latex, 7 .eps figures v2: minor wording change +
reference adde
Shift of percolation thresholds for epidemic spread between static and dynamic small-world networks
The aim of the study was to compare the epidemic spread on static and dynamic
small-world networks. The network was constructed as a 2-dimensional
Watts-Strogatz model (500x500 square lattice with additional shortcuts), and
the dynamics involved rewiring shortcuts in every time step of the epidemic
spread. The model of the epidemic is SIR with latency time of 3 time steps. The
behaviour of the epidemic was checked over the range of shortcut probability
per underlying bond 0-0.5. The quantity of interest was percolation threshold
for the epidemic spread, for which numerical results were checked against an
approximate analytical model. We find a significant lowering of percolation
thresholds for the dynamic network in the parameter range given. The result
shows that the behaviour of the epidemic on dynamic network is that of a static
small world with the number of shortcuts increased by 20.7 +/- 1.4%, while the
overall qualitative behaviour stays the same. We derive corrections to the
analytical model which account for the effect. For both dynamic and static
small-world we observe suppression of the average epidemic size dependence on
network size in comparison with finite-size scaling known for regular lattice.
We also study the effect of dynamics for several rewiring rates relative to
latency time of the disease.Comment: 13 pages, 6 figure
Chiral Spin Liquids and Quantum Error Correcting Codes
The possibility of using the two-fold topological degeneracy of spin-1/2
chiral spin liquid states on the torus to construct quantum error correcting
codes is investigated. It is shown that codes constructed using these states on
finite periodic lattices do not meet the necessary and sufficient conditions
for correcting even a single qubit error with perfect fidelity. However, for
large enough lattice sizes these conditions are approximately satisfied, and
the resulting codes may therefore be viewed as approximate quantum error
correcting codes.Comment: 9 pages, 3 figure
Tracing enteric pathogen contamination in sub-Saharan African groundwater
Quantitative PCR (qPCR) can rapidly screen for an array of faecally-derived bacteria, which can be employed as tracers to understand groundwater vulnerability to faecal contamination. A microbial DNA qPCR array was used to examine 45 bacterial targets, potentially relating to enteric pathogens, in 22 groundwater supplies beneath the city of Kabwe, Zambia in both the dry and subsequent wet season. Thermotolerant (faecal) coliforms, sanitary risks, and tryptophan-like fluorescence, an emerging real-time reagentless faecal indicator, were also concurrently investigated. There was evidence for the presence of enteric bacterial contamination, through the detection of species and group specific 16S rRNA gene fragments, in 72% of supplies where sufficient DNA was available for qPCR analysis. DNA from the opportunistic pathogen Citrobacter freundii was most prevalent (69% analysed samples), with Vibrio cholerae also perennially persistent in groundwater (41% analysed samples). DNA from other species such as Bifidobacterium longum and Arcobacter butzleri was more seasonally transient. Bacterial DNA markers were most common in shallow hand-dug wells in laterite/saprolite implicating rapid subsurface pathways and vulnerability to pollution at the surface. Boreholes into the underlying dolomites were also contaminated beneath the city highlighting that a laterite/saprolite overburden, as occurs across much of sub-Saharan aquifer, does not adequately protect underlying bedrock groundwater resources. Nevertheless, peri-urban boreholes all tested negative establishing there is limited subsurface lateral transport of enteric bacteria outside the city limits. Thermotolerant coliforms were present in 97% of sites contaminated with enteric bacterial DNA markers. Furthermore, tryptophan-like fluorescence was also demonstrated as an effective indicator and was in excess of 1.4 μg/L in all contaminated sites
Simulating Turbulence Using the Astrophysical Discontinuous Galerkin Code TENET
In astrophysics, the two main methods traditionally in use for solving the
Euler equations of ideal fluid dynamics are smoothed particle hydrodynamics and
finite volume discretization on a stationary mesh. However, the goal to
efficiently make use of future exascale machines with their ever higher degree
of parallel concurrency motivates the search for more efficient and more
accurate techniques for computing hydrodynamics. Discontinuous Galerkin (DG)
methods represent a promising class of methods in this regard, as they can be
straightforwardly extended to arbitrarily high order while requiring only small
stencils. Especially for applications involving comparatively smooth problems,
higher-order approaches promise significant gains in computational speed for
reaching a desired target accuracy. Here, we introduce our new astrophysical DG
code TENET designed for applications in cosmology, and discuss our first
results for 3D simulations of subsonic turbulence. We show that our new DG
implementation provides accurate results for subsonic turbulence, at
considerably reduced computational cost compared with traditional finite volume
methods. In particular, we find that DG needs about 1.8 times fewer degrees of
freedom to achieve the same accuracy and at the same time is more than 1.5
times faster, confirming its substantial promise for astrophysical
applications.Comment: 21 pages, 7 figures, to appear in Proceedings of the SPPEXA
symposium, Lecture Notes in Computational Science and Engineering (LNCSE),
Springe
Spectral properties of the one-dimensional two-channel Kondo lattice model
We have studied the energy spectrum of a one-dimensional Kondo lattice, where
the localized magnetic moments have SU(N) symmetry and two channels of
conduction electrons are present. At half filling, the system is shown to exist
in two phases: one dominated by RKKY-exchange interaction effects, and the
other by Kondo screening. A quantum phase transition point separates these two
regimes at temperature . The Kondo-dominated phase is shown to possess
soft modes, with spectral gaps much smaller than the Kondo temperature.Comment: 4 pages + 2 figures. Submitted for publicatio
Darkness visible: reflections on underground ecology
1 Soil science and ecology have developed independently, making it difficult for ecologists to contribute to urgent current debates on the destruction of the global soil resource and its key role in the global carbon cycle. Soils are believed to be exceptionally biodiverse parts of ecosystems, a view confirmed by recent data from the UK Soil Biodiversity Programme at Sourhope, Scotland, where high diversity was a characteristic of small organisms, but not of larger ones. Explaining this difference requires knowledge that we currently lack about the basic biology and biogeography of micro-organisms. 2 It seems inherently plausible that the high levels of biological diversity in soil play some part in determining the ability of soils to undertake ecosystem-level processes, such as carbon and mineral cycling. However, we lack conceptual models to address this issue, and debate about the role of biodiversity in ecosystem processes has centred around the concept of functional redundancy, and has consequently been largely semantic. More precise construction of our experimental questions is needed to advance understanding. 3 These issues are well illustrated by the fungi that form arbuscular mycorrhizas, the Glomeromycota. This ancient symbiosis of plants and fungi is responsible for phosphate uptake in most land plants, and the phylum is generally held to be species-poor and non-specific, with most members readily colonizing any plant species. Molecular techniques have shown both those assumptions to be unsafe, raising questions about what factors have promoted diversification in these fungi. One source of this genetic diversity may be functional diversity. 4 Specificity of the mycorrhizal interaction between plants and fungi would have important ecosystem consequences. One example would be in the control of invasiveness in introduced plant species: surprisingly, naturalized plant species in Britain are disproportionately from mycorrhizal families, suggesting that these fungi may play a role in assisting invasion. 5 What emerges from an attempt to relate biodiversity and ecosystem processes in soil is our extraordinary ignorance about the organisms involved. There are fundamental questions that are now answerable with new techniques and sufficient will, such as how biodiverse are natural soils? Do microbes have biogeography? Are there rare or even endangered microbes
- …