432 research outputs found

    Race-time prediction for the Va’a paralympic sprint canoe

    Get PDF
    The 2016 Paralympic Games in Rio de Janeiro will see 200m sprint canoe events for the first time, using the Va’a class. The aim of this study is to predict race times for the Va’a over a 200m sprint event, through simulation of the hydrodynamic resistance of the hull (with outrigger) and the propulsion provided by the athlete. Such a simulation, once suitably validated, allows investigation of design and configuration changes on predicted race performance. The accuracy of the simulation is discussed through a comparison to times recorded for an athlete over a 200m race distanc

    The effect of swimsuit resistance on freestyle swimming race time.

    No full text
    It is known that swimming equipment (suit, cap and goggles) can affect the total resistance of a swimmer, and therefore impact the resulting swimming speed and race time. After the 2009 swimming world championships (WC) the international swimming federation (FINA) banned a specific type of full body suit, which resulted in an increase in race times for subsequent WC events. This study proposes that the 2009 suits provided a reduction in swimming resistance and aims to quantify this resistance reduction for male and female freestyle events. Due to the practical difficulties of testing a large sample of swimmers a simulation approach is adopted. To quantify the race time improvement that the 2009 suits provided, an equivalent 2009 “no-suit” dataset is created, incorporating the general trend of improving swimming performance over time, and compared to the actual 2009 times. A full race simulation is developed where the start, turn, underwater and surface swimming phases are captured. Independent resistance models are used for surface and underwater swimming; coupled with a leg propulsion model for underwater undulatory swimming and freestyle flutter kick, and a single element arm model to simulate freestyle arm propulsion. A validation is performed to ensure the simulation captures the change in swimming speed with changes to resistance and is found to be within 5% of reality. Race times for an equivalent “no-suit” 2009 situation are simulated and the total resistance reduced to achieve the actual 2009 race times. An average resistance reduction of 4.8% provided by the 2009 suits is identified. A factor of 0.47 ± 10%, to convert resistance changes to freestyle race time changes is determine

    Knock-on community impacts of a novel vector: spillover of emerging DWV-B from Varroa-infested honeybees to wild bumblebees.

    Get PDF
    This is the final version. Available from the publisher via the DOI in this record.The Sanger sequences that support the findings of this study have been deposited in GenBank with virus accession codes MG264907‐MG265503 and Nosema accession codes MK942707‐MK942712; SMRT reads have been archived in NCBI's Sequence Read Archive with BioProject accession number PRJNA542789. Prevalence and qPCR data that support the findings will be available from the Dryad Digital Repository: https://doi.org/10.5061/dryad.70jt240.Novel transmission routes can directly impact the evolutionary ecology of infectious diseases, with potentially dramatic effect on host populations and knock-on effects on the wider host community. The invasion of Varroa destructor, an ectoparasitic viral vector in Western honeybees, provides a unique opportunity to examine how a novel vector affects disease epidemiology in a host community. This specialist honeybee mite vectors deformed wing virus (DWV), an important re-emerging honeybee pathogen that also infects wild bumblebees. Comparing island honeybee and wild bumblebee populations with and without V. destructor, we show that V. destructor drives DWV prevalence and titre in honeybees and sympatric bumblebees. Viral genotypes are shared across hosts, with the potentially more virulent DWV-B overtaking DWV-A in prevalence in a current epidemic. This demonstrates disease emergence across a host community driven by the acquisition of a specialist novel transmission route in one host, with dramatic community level knock-on effects

    Large-scale collective motion of RFGC galaxies in curved space-time

    Full text link
    We consider large-scale collective motion of flat edge-on spiral galaxies from the Revised Flat Galaxy Catalogue (RFGC) taking into account the curvature of space-time in the Local Universe at the scale 100 Mpc/h. We analyse how the relativistic model of collective motion should be modified to provide the best possible values of parameters, the effects that impact these parameters and ways to mitigate them. Evolution of galactic diameters, selection effects, and difference between isophotal and angular diameter distances are inadequate to explain this impact. At the same time, measurement error in HI line widths and angular diameters can easily provide such an impact. This is illustrated in a toy model, which allows analytical consideration, and then in the full model using Monte Carlo simulations. The resulting velocity field is very close to that provided by the non-relativistic model of motion. The obtained bulk flow velocity is consistent with {\Lambda}CDM cosmology.Comment: 10 pages, 3 figures, 2 table

    Large-scale collective motion of RFGC galaxies

    Full text link
    We processed the data about radial velocities and HI linewidths for 1678 flat edge-on spirals from the Revised Flat Galaxy Catalogue. We obtained the parameters of the multipole components of large-scale velocity field of collective non-Hubble galaxy motion as well as the parameters of the generalized Tully-Fisher relationship in the "HI line width - linear diameter" version. All the calculations were performed independently in the framework of three models, where the multipole decomposition of the galaxy velocity field was limited to a dipole, quadrupole and octopole terms respectively. We showed that both the quadrupole and the octopole components are statistically significant. On the basis of the compiled list of peculiar velocities of 1623 galaxies we obtained the estimations of cosmological parameters Omega_m and sigma_8. This estimation is obtained in both graphical form and as a constraint of the value S_8=sigma_8(Omega_m/0.3)^0.35 = 0.91 +/- 0.05.Comment: Accepted for publication in Astrophysics and Space Scienc

    High-Energy Aspects of Solar Flares: Overview of the Volume

    Full text link
    In this introductory chapter, we provide a brief summary of the successes and remaining challenges in understanding the solar flare phenomenon and its attendant implications for particle acceleration mechanisms in astrophysical plasmas. We also provide a brief overview of the contents of the other chapters in this volume, with particular reference to the well-observed flare of 2002 July 23Comment: This is the introductory article for a monograph on the physics of solar flares, inspired by RHESSI observations. The individual articles are to appear in Space Science Reviews (2011

    Quantum interference between non-magnetic impurities in d_x2-y2-wave superconductors

    Full text link
    We study quantum interference of electronic waves that are scattered by multiple non-magnetic impurities in a d_x2-y2-wave superconductor. We show that the number of resonance states in the density-of-states (DOS), as well as their frequency and spatial dependence change significantly as the distance between the impurities or their orientation relative to the crystal lattice is varied. Since the latter effect arises from the momentum dependence of the superconducting gap, we argue that quantum interference is a novel tool to identify the symmetry of unconventional superconductors.Comment: 4 pages, 4 figure

    Efficient photoionization for barium ion trapping using a dipole-allowed resonant two-photon transition

    Full text link
    Two efficient and isotope-selective resonant two-photon ionization techniques for loading barium ions into radio-frequency (RF)-traps are demonstrated. The scheme of using a strong dipole-allowed transition at \lambda=553 nm as a first step towards ionization is compared to the established technique of using a weak intercombination line (\lambda=413 nm). An increase of two orders of magnitude in the ionization efficiency is found favoring the transition at 553 nm. This technique can be implemented using commercial all-solid-state laser systems and is expected to be advantageous compared to other narrowband photoionization schemes of barium in cases where highest efficiency and isotope-selectivity are required.Comment: 8 pages, 5 figure
    • 

    corecore