2,127 research outputs found

    Synthesis of simulant ‘lava-like’ fuel containing materials (LFCM) from the Chernobyl reactor Unit 4 meltdown

    Get PDF
    A preliminary investigation of the synthesis and characterization of simulant ‘lava-like’ fuel containing materials (LFCM), as low activity analogues of LFCM produced by the melt down of Chernobyl Unit 4. Simulant materials were synthesized by melting batched reagents in a tube furnace at 1500 °C, under reducing atmosphere with controlled cooling to room temperature, to simulate conditions of lava formation. Characterization using XRD and SEM-EDX identified several crystalline phases including ZrO2, UOx and solid solutions with spherical metal particles encapsulated by a glassy matrix. The UOX and ZrO2 phase morphology was very diverse comprising of fused crystals to dendritic crystallites from the crystallization of uranium initially dissolved in the glass phase. This project aims to develop simulant LFCM to assess the durability of Chernobyl lavas and to determine the rate of dissolution, behavior and evolution of these materials under shelter conditions

    Topological quantization and degeneracy in Josephson-junction arrays

    Full text link
    We consider the conductivity quantization in two-dimensional arrays of mesoscopic Josephson junctions, and examine the associated degeneracy in various regimes of the system. The filling factor of the system may be controlled by the gate voltage as well as the magnetic field, and its appropriate values for quantization is obtained by employing the Jain hierarchy scheme both in the charge description and in the vortex description. The duality between the two descriptions then suggests the possibility that the system undergoes a change in degeneracy while the quantized conductivity remains fixed.Comment: To appear in Phys. Rev.

    Renormalization group and 1/N expansion for 3-dimensional Ginzburg-Landau-Wilson models

    Full text link
    A renormalization-group scheme is developed for the 3-dimensional O(2N2N)-symmetric Ginzburg-Landau-Wilson model, which is consistent with the use of a 1/N expansion as a systematic method of approximation. It is motivated by an application to the critical properties of superconductors, reported in a separate paper. Within this scheme, the infrared stable fixed point controlling critical behaviour appears at z=0z=0, where z=λ1z=\lambda^{-1} is the inverse of the quartic coupling constant, and an efficient renormalization procedure consists in the minimal subtraction of ultraviolet divergences at z=0z=0. This scheme is implemented at next-to-leading order, and the standard results for critical exponents calculated by other means are recovered. An apparently novel result of this non-perturbative method of approximation is that corrections to scaling (or confluent singularities) do not, as in perturbative analyses, appear as simple power series in the variable y=ztωνy=zt^{\omega\nu}. At least in three dimensions, the power series are modified by powers of lny\ln y.Comment: 20 pages; 5 figure

    Test of renormalization predictions for universal finite-size scaling functions

    Full text link
    We calculate universal finite-size scaling functions for systems with an n-component order parameter and algebraically decaying interactions. Just as previously has been found for short-range interactions, this leads to a singular epsilon-expansion, where epsilon is the distance to the upper critical dimension. Subsequently, we check the results by numerical simulations of spin models in the same universality class. Our systems offer the essential advantage that epsilon can be varied continuously, allowing an accurate examination of the region where epsilon is small. The numerical calculations turn out to be in striking disagreement with the predicted singularity.Comment: 6 pages, including 3 EPS figures. To appear in Phys. Rev. E. Also available as PDF file at http://www.cond-mat.physik.uni-mainz.de/~luijten/erikpubs.htm

    Quantum phases of atomic boson-fermion mixtures in optical lattices

    Full text link
    The zero-temperature phase diagram of a binary mixture of bosonic and fermionic atoms in an one-dimensional optical lattice is studied in the framework of the Bose-Fermi-Hubbard model. By exact numerical solution of the associated eigenvalue problems, ground state observables and the response to an external phase twist are evaluated. The stiffnesses under phase variations provide measures for the boson superfluid fraction and the fermionic Drude weight. Several distinct quantum phases are identified as function of the strength of the repulsive boson-boson and the boson-fermion interaction. Besides the bosonic Mott-insulator phase, two other insulating phases are found, where both the bosonic superfluid fraction and the fermionic Drude weight vanish simultaneously. One of these double-insulator phases exhibits a crystalline diagonal long-range order, while the other is characterized by spatial separation of the two species.Comment: 4 pages, 3 figures, using REVTEX

    Quantum pumping and dissipation: from closed to open systems

    Full text link
    Current can be pumped through a closed system by changing parameters (or fields) in time. The Kubo formula allows to distinguish between dissipative and non-dissipative contributions to the current. We obtain a Green function expression and an SS matrix formula for the associated terms in the generalized conductance matrix: the "geometric magnetism" term that corresponds to adiabatic transport; and the "Fermi golden rule" term which is responsible to the irreversible absorption of energy. We explain the subtle limit of an infinite system, and demonstrate the consistency with the formulas by Landauer and Buttiker, Pretre and Thomas. We also discuss the generalization of the fluctuation-dissipation relation, and the implications of the Onsager reciprocity.Comment: 4 page paper, 1 figure (published version) + 2 page appendi

    Bose-Einstein condensation and superfluidity of dilute Bose gas in a random potential

    Full text link
    We develop the dilute Bose gas model with random potential in order to understand the Bose system in random media such as 4He in porous glass. Using the random potential taking account of the pore size dependence, we can compare quantitatively the calculated specific heat with the experimental results, without free parameters. The agreement is excellent at low temperatures, which justifies our model. The relation between Bose condensation and superfluidity is discussed. Our model can predict some unobserved phenomena in this system.Comment: 9 pages, 11 figures, accepted for publication in Phys. Rev.

    Disordered Bosons: Condensate and Excitations

    Full text link
    The disordered Bose Hubbard model is studied numerically within the Bogoliubov approximation. First, the spatially varying condensate wavefunction in the presence of disorder is found by solving a nonlinear Schrodinger equation. Using the Bogoliubov approximation to find the excitations above this condensate, we calculate the condensate fraction, superfluid density, and density of states for a two-dimensional disordered system. These results are compared with experiments done with 4He{}^4{\rm He} adsorbed in porous media.Comment: RevTeX, 26 pages and 10 postscript figures appended (Figure 9 has three separate plots, so 12 postcript files altogether
    corecore