172 research outputs found

    A dynamical dark energy model with a given luminosity distance

    Full text link
    It is assumed that the current cosmic acceleration is driven by a scalar field, the Lagrangian of which is a function of the kinetic term only, and that the luminosity distance is a given function of the red-shift. Upon comparison with Baryon Acoustic Oscillations (BAOs) and Cosmic Microwave Background (CMB) data the parameters of the models are determined, and then the time evolution of the scalar field is determined by the dynamics using the cosmological equations. We find that the solution is very different than the corresponding solution when the non-relativistic matter is ignored, and that the universe enters the acceleration era at larger red-shift compared to the standard ΛCDM\Lambda CDM model.Comment: 4 pages, 3 figures, accepted for publication in GER

    Density correlations in ultracold atomic Fermi gases

    Get PDF
    We investigate density fluctuations in a coherent ensemble of interacting fermionic atoms. Adapting the concept of full counting statistics, well-known from quantum optics and mesoscopic electron transport, we study second-order as well as higher-order correlators of density fluctuations. Using the mean-field BCS state to describe the whole interval between the BCS limit and the BEC limit, we obtain an exact expression for the cumulant-generating function of the density fluctuations of an atomic cloud. In the two-dimensional case, we obtain a closed analytical expression. Poissonian fluctuations of a molecular condensate on the BEC side are strongly suppressed on the BCS side. The size of the fluctuations in the BCS limit is a direct measure of the pairing potential. We also discuss the BEC-BCS crossover of the third cumulant and the temperature dependence of the second cumulant.Comment: 4 pages, 4 figures. To appear in Phys. Rev. A. New calculation of the bin statistics of a free Bose gas; updated and extended bibliograph

    Cosmological scaling solutions in generalised Gauss-Bonnet gravity theories

    Full text link
    The conditions for the existence and stability of cosmological power-law scaling solutions are established when the Einstein-Hilbert action is modified by the inclusion of a function of the Gauss-Bonnet curvature invariant. The general form of the action that leads to such solutions is determined for the case where the universe is sourced by a barotropic perfect fluid. It is shown by employing an equivalence between the Gauss-Bonnet action and a scalar-tensor theory of gravity that the cosmological field equations can be written as a plane autonomous system. It is found that stable scaling solutions exist when the parameters of the model take appropriate values.Comment: 10 pages and 5 figure

    Quintessence arising from exponential potentials

    Get PDF
    We demonstrate how exponential potentials that could arise in the early Universe as a result of Kaluza-Klein type compactifications of string theory, can lead to cosmological solutions which correspond to the currently observed accelerating Universe. The idea is simple, relying solely on the known scaling properties associated with exponential potentials. In particular we show that the existence of stable attractor solutions implies that the results hold for a wide range of coupling constants and initial conditions.Comment: 4 pages, 3 figures, published versio

    Revisiting Cardassian Model and Cosmic Constraint

    Full text link
    In this paper, we revisit the Cardassian model in which the radiation energy component is included. It is important for early epoch when the radiation cannot be neglected because the equation of state (EoS) of the effective dark energy becomes time variable. Therefore, it is not equivalent to the quintessence model with a constant EoS anymore. This situation was almost overlooked in the literature. By using the recent released Union2 557 of type Ia supernovae (SN Ia), the baryon acoustic oscillation (BAO) from Sloan Digital Sky Survey and the WiggleZ data points, the full information of cosmic microwave background (CMB) measurement given by the seven-year Wilkinson Microwave Anisotropy Probe observation, we constrain the Cardassian model via the Markov Chain Monte Carlo (MCMC) method. A tight constraint is obtained: n=−0.0479−0.0732−0.148+0.0730+0.142n= -0.0479_{- 0.0732- 0.148}^{+ 0.0730+ 0.142} in 1,2σ1,2\sigma regions. The deviation of Cardassian model from quintessence model is shown in CMB anisotropic power spectra at high l's parts due to the evolution of EoS. But it is about the order of 0.1% which cannot be discriminated by current data sets. The Cardassian model is consistent with current cosmic observational data sets.Comment: 6 pages, 5 figures, match the published versio

    Some FRW Models of Accelerating Universe with Dark Energy

    Full text link
    The paper deals with a spatially homogeneous and isotropic FRW space-time filled with perfect fluid and dark energy components. The two sources are assumed to interact minimally, and therefore their energy momentum tensors are conserved separately. A special law of variation for the Hubble parameter proposed by Berman (1983) has been utilized to solve the field equations. The Berman's law yields two explicit forms of the scale factor governing the FRW space-time and constant values of deceleration parameter. The role of dark energy with variable equation of state parameter has been studied in detail in the evolution of FRW universe. It has been found that dark energy dominates the universe at the present epoch, which is consistent with the observations. The physical behavior of the universe is discussed in detail.Comment: 10 pages, 5 figure

    Monte Carlo reconstruction of the inflationary potential

    Get PDF
    We present Monte Carlo reconstruction, a new method for ``inverting'' observational data to constrain the form of the scalar field potential responsible for inflation. This stochastic technique is based on the flow equation formalism and has distinct advantages over reconstruction methods based on a Taylor expansion of the potential. The primary ansatz required for Monte Carlo reconstruction is simply that inflation is driven by a single scalar field. We also require a very mild slow roll constraint, which can be made arbitrarily weak since Monte Carlo reconstruction is implemented at arbitrary order in the slow roll expansion. While our method cannot evade fundamental limits on the accuracy of reconstruction, it can be simply and consistently applied to poor data sets, and it takes advantage of the attractor properties of single-field inflation models to constrain the potential outside the small region directly probed by observations. We show examples of Monte Carlo reconstruction for data sets similar to that expected from the Planck satellite, and for a hypothetical measurement with a factor of five better parameter discrimination than Planck.Comment: 10 pages, 5 figures (RevTeX 4) Version submitted to PRD: references added, minor clarification

    Lemaitre-Tolman-Bondi model and accelerating expansion

    Full text link
    I discuss the spherically symmetric but inhomogeneous Lemaitre-Tolman- Bondi (LTB) metric, which provides an exact toy model for an inhomogeneous universe. Since we observe light rays from the past light cone, not the expansion of the universe, spatial variation in matter density and Hubble rate can have the same effect on redshift as acceleration in a perfectly homogeneous universe. As a consequence, a simple spatial variation in the Hubble rate can account for the distant supernova data in a dust universe without any dark energy. I also review various attempts towards a semirealistic description of the universe based on the LTB model.Comment: Invited Review for a special Gen. Rel. Grav. issue on Dark Energy. 17 pages, 3 figure

    Cosmology With Non-Minimally Coupled K-Field

    Full text link
    We consider non-minimally coupled (with gravity) scalar field with non-canonical kinetic energy. The form of the kinetic term is of Dirac-Born-Infeld (DBI) form.We study the early evolution of the universe when it is sourced only by the k-field, as well as late time evolution when both the matter and k-field are present. For the k-field, we have considered constant potential as well as potential inspired from Boundary String Field Theory (B-SFT). We show that it is possible to have inflationary solution in early time as well as late time accelerating phase. The solutions also exhibit attractor property in a sense that it does not depend on the initial conditions for a certain values of the parameters.Comment: 10 pages, Revtex style, 14 eps figures, to appear in General Relativity and Gravitatio

    Models of quintessence coupled to the electromagnetic field and the cosmological evolution of alpha

    Full text link
    We study the change of the effective fine structure constant in the cosmological models of a scalar field with a non-vanishing coupling to the electromagnetic field. Combining cosmological data and terrestrial observations we place empirical constraints on the size of the possible coupling and explore a large class of models that exhibit tracking behavior. The change of the fine structure constant implied by the quasar absorption spectra together with the requirement of tracking behavior impose a lower bound of the size of this coupling. Furthermore, the transition to the quintessence regime implies a narrow window for this coupling around 10−510^{-5} in units of the inverse Planck mass. We also propose a non-minimal coupling between electromagnetism and quintessence which has the effect of leading only to changes of alpha determined from atomic physics phenomena, but leaving no observable consequences through nuclear physics effects. In doing so we are able to reconcile the claimed cosmological evidence for a changing fine structure constant with the tight constraints emerging from the Oklo natural nuclear reactor.Comment: 13 pages, 10 figures, RevTex, new references adde
    • 

    corecore