121 research outputs found

    Finite nuclear size effect on Lamb shift of s1/2, p1/2, and p3/2 atomic states

    Full text link
    We consider one-loop self-energy and vacuum polarization radiative corrections to the shift of atomic energy level due to finite nuclear size. Analytic expressions for vacuum polarization corrections are derived. For the self-energy of p1/2 and p3/2 states in addition to already known terms we derive next-to-leading nonlogarithmic Z\alpha-terms. Together with contributions obtained earlier the terms derived in the present work give explicit analytic expressions for s1/2 and p1/2 corrections which agree with results of previous numerical calculations up to Z=100 (Z is the nuclear charge number). We also show that the finite nuclear size radiative correction for a p3/2 state is not small compared to the similar correction for a p1/2 state at least for small Z.Comment: 12 pages, 7 figure

    Many-body-QED perturbation theory: Connection to the Bethe-Salpeter equation

    Full text link
    The connection between many-body theory (MBPT)--in perturbative and non-perturbative form--and quantum-electrodynamics (QED) is reviewed for systems of two fermions in an external field. The treatment is mainly based upon the recently developed covariant-evolution-operator method for QED calculations [Lindgren et al. Phys. Rep. 389, 161 (2004)], which has a structure quite akin to that of many-body perturbation theory. At the same time this procedure is closely connected to the S-matrix and the Green's-function formalisms and can therefore serve as a bridge between various approaches. It is demonstrated that the MBPT-QED scheme, when carried to all orders, leads to a Schroedinger-like equation, equivalent to the Bethe-Salpeter (BS) equation. A Bloch equation in commutator form that can be used for an "extended" or quasi-degenerate model space is derived. It has the same relation to the BS equation as has the standard Bloch equation to the ordinary Schroedinger equation and can be used to generate a perturbation expansion compatible with the BS equation also for a quasi-degenerate model space.Comment: Submitted to Canadian J of Physic

    Prospects for e+e- physics at Frascati between the phi and the psi

    Get PDF
    We present a detailed study, done in the framework of the INFN 2006 Roadmap, of the prospects for e+e- physics at the Frascati National Laboratories. The physics case for an e+e- collider running at high luminosity at the phi resonance energy and also reaching a maximum center of mass energy of 2.5 GeV is discussed, together with the specific aspects of a very high luminosity tau-charm factory. Subjects connected to Kaon decay physics are not discussed here, being part of another INFN Roadmap working group. The significance of the project and the impact on INFN are also discussed. All the documentation related to the activities of the working group can be found in http://www.roma1.infn.it/people/bini/roadmap.html.Comment: INFN Roadmap Report: 86 pages, 25 figures, 9 table

    A universal power-law prescription for variability from synthetic images of black hole accretion flows

    Get PDF
    Instrumentatio

    First sagittarius A* Event Horizon Telescope results. IV. Variability, morphology, and black hole mass

    Get PDF
    Galaxie
    corecore