942 research outputs found
Predicting effects of environmental change on a migratory herbivore
Changes in climate, food abundance and disturbance from humans threaten the ability of species to successfully use stopover sites and migrate between non-breeding and breeding areas. To devise successful conservation strategies for migratory species we need to be able to predict how such changes will affect both individuals and populations. Such predictions should ideally be process-based, focusing on the mechanisms through which changes alter individual physiological state and behavior. In this study we use a process-based model to evaluate how Black Brant (Branta bernicla nigricans) foraging on common eelgrass (Zostera marina) at a stopover site (Humboldt Bay, USA), may be affected by changes in sea level, food abundance and disturbance. The model is individual-based, with empirically based parameters, and incorporates the immigration of birds into the site, tidal changes in availability of eelgrass, seasonal and depth-related changes in eelgrass biomass, foraging behavior and energetics of the birds, and their mass- dependent decisions to emigrate. The model is validated by comparing predictions to observations across a range of system properties including the time birds spent foraging, probability of birds emigrating, mean stopover duration, peak bird numbers, rates of mass gain and distribution of birds within the site: all 11 predictions were within 35% of the observed value, and 8 within 20%. The model predicted that the eelgrass within the site could potentially support up to five times as many birds as currently use the site. Future predictions indicated that the rate of mass gain and mean stopover duration were relatively insensitive to sea level rise over the next 100 years, primarily because eelgrass habitat could redistribute shoreward into intertidal mudflats within the site to compensate for higher sea levels. In contrast, the rate of mass gain and mean stopover duration were sensitive to changes in total eelgrass biomass and the percentage of time for which birds were disturbed. We discuss the consequences of these predictions for Black Brant conservation. A wide range of migratory species responses are expected in response to environmental change. Process-based models are potential tools to predict such responses and understand the mechanisms which underpin them
Comparing Probabilistic Models for Melodic Sequences
Modelling the real world complexity of music is a challenge for machine
learning. We address the task of modeling melodic sequences from the same music
genre. We perform a comparative analysis of two probabilistic models; a
Dirichlet Variable Length Markov Model (Dirichlet-VMM) and a Time Convolutional
Restricted Boltzmann Machine (TC-RBM). We show that the TC-RBM learns
descriptive music features, such as underlying chords and typical melody
transitions and dynamics. We assess the models for future prediction and
compare their performance to a VMM, which is the current state of the art in
melody generation. We show that both models perform significantly better than
the VMM, with the Dirichlet-VMM marginally outperforming the TC-RBM. Finally,
we evaluate the short order statistics of the models, using the
Kullback-Leibler divergence between test sequences and model samples, and show
that our proposed methods match the statistics of the music genre significantly
better than the VMM.Comment: in Proceedings of the ECML-PKDD 2011. Lecture Notes in Computer
Science, vol. 6913, pp. 289-304. Springer (2011
Multi-timescale Solar Cycles and the Possible Implications
Based on analysis of the annual averaged relative sunspot number (ASN) during
1700 -- 2009, 3 kinds of solar cycles are confirmed: the well-known 11-yr cycle
(Schwabe cycle), 103-yr secular cycle (numbered as G1, G2, G3, and G4,
respectively since 1700); and 51.5-yr Cycle. From similarities, an
extrapolation of forthcoming solar cycles is made, and found that the solar
cycle 24 will be a relative long and weak Schwabe cycle, which may reach to its
apex around 2012-2014 in the vale between G3 and G4. Additionally, most Schwabe
cycles are asymmetric with rapidly rising-phases and slowly decay-phases. The
comparisons between ASN and the annual flare numbers with different GOES
classes (C-class, M-class, X-class, and super-flare, here super-flare is
defined as X10.0) and the annal averaged radio flux at frequency of 2.84
GHz indicate that solar flares have a tendency: the more powerful of the flare,
the later it takes place after the onset of the Schwabe cycle, and most
powerful flares take place in the decay phase of Schwabe cycle. Some
discussions on the origin of solar cycles are presented.Comment: 8 pages, 4 figure
Crossing borders: new teachers co-constructing professional identity in performative times
This paper draws on a range of theoretical perspectives on the construction of new teachers’ professional identity. It focuses particularly on the impact of the development in many national education systems of a performative culture of the management and regulation of teachers’ work. Whilst the role of interactions with professional colleagues and school managers in the performative school has been extensively researched, less attention has been paid to new teachers’ interactions with students. This paper highlights the need for further research focusing on the process of identity co-construction with students. A key theoretical concept employed is that of liminality, the space within which identities are in transition as teachers adjust to the culture of a new professional workplace, and the nature of the engagement of new teachers, or teachers who change schools, with students. The authors argue that an investigation into the processes of this co-construction of identity offers scope for new insights into the extent to which teachers might construct either a teacher identity at odds with their personal and professional values, or a more ‘authentic’ identity that counters performative discourses. These insights will in turn add to our understanding of the complex range of factors impacting on teacher resilience and motivation
Transverse Beam Spin Asymmetries in Forward-Angle Elastic Electron-Proton Scattering
We have measured the beam-normal single-spin asymmetry in elastic scattering
of transversely-polarized 3 GeV electrons from unpolarized protons at Q^2 =
0.15, 0.25 (GeV/c)^2. The results are inconsistent with calculations solely
using the elastic nucleon intermediate state, and generally agree with
calculations with significant inelastic hadronic intermediate state
contributions. A_n provides a direct probe of the imaginary component of the
2-gamma exchange amplitude, the complete description of which is important in
the interpretation of data from precision electron-scattering experiments.Comment: 5 pages, 3 figures, submitted to Physical Review Letters; shortened
to meet PRL length limit, clarified some text after referee's comment
Strange Quark Contributions to Parity-Violating Asymmetries in the Forward G0 Electron-Proton Scattering Experiment
We have measured parity-violating asymmetries in elastic electron-proton
scattering over the range of momentum transfers 0.12 < Q^2 < 1.0 GeV^2. These
asymmetries, arising from interference of the electromagnetic and neutral weak
interactions, are sensitive to strange quark contributions to the currents of
the proton. The measurements were made at JLab using a toroidal spectrometer to
detect the recoiling protons from a liquid hydrogen target. The results
indicate non-zero, Q^2 dependent, strange quark contributions and provide new
information beyond that obtained in previous experiments.Comment: 5 pages, 2 figure
- …