31 research outputs found

    Subject-specific, multiscale simulation of electrophysiology: a software pipeline for image-based models and application examples

    Get PDF
    Many simulation studies in biomedicine are based on a similar sequence of processing steps, starting from images and running through geometric model generation, assignment of tissue properties, numerical simulation and visualization of the results—a process known as image-based geometric modelling and simulation. We present an overview of software systems for implementing such a sequence both within highly integrated problem-solving environments and in the form of loosely integrated pipelines. Loose integration in this case indicates that individual programs function largely independently but communicate through files of a common format and support simple scripting, so as to automate multiple executions wherever possible. We then describe three specific applications of such pipelines to translational biomedical research in electrophysiology

    The Intentional Use of Service Recovery Strategies to Influence Consumer Emotion, Cognition and Behaviour

    Get PDF
    Service recovery strategies have been identified as a critical factor in the success of. service organizations. This study develops a conceptual frame work to investigate how specific service recovery strategies influence the emotional, cognitive and negative behavioural responses of . consumers., as well as how emotion and cognition influence negative behavior. Understanding the impact of specific service recovery strategies will allow service providers' to more deliberately and intentionally engage in strategies that result in positive organizational outcomes. This study was conducted using a 2 x 2 between-subjects quasi-experimental design. The results suggest that service recovery has a significant impact on emotion, cognition and negative behavior. Similarly, satisfaction, negative emotion and positive emotion all influence negative behavior but distributive justice has no effect

    Cytological changes related to Brucella canis variants uptake in vitro

    Full text link
    In this study, evidence for in vitro uptake, invasion, and cytopathogonomic effects of normal and variant strains of B. canis on tissue culture, is presented. B. canis L-phase were penicillin-induced and these microorganisms produced revertants on penicillin-free media. Tissue culture (LLC-MK 2 ) cells were divided into different normal and variant-infected groups (I–IV), including controls. Bright-field and electron microscopic observations indicated uptake of all the strains and recognizable host cell damage (CPE) to varying degrees. At 72 h after infection, the extent of damage by L-phase was the least (55.5% CPE). The L-phase-derived revertants resulted in 80% damage; this approximates the adverse effect of normal B. canis (85%). In addition to these gross changes, various structural abnormalities, including pyknosis, nuclear disorganization, vacuolation, and karyorrhexis, were apparent. The implications of these findings and the indirect role of the L-phase in brucellosis due to B. canis are discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47529/1/430_2005_Article_BF02123560.pd

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
    corecore