817 research outputs found

    Constraining the Cosmic Star Formation Rate with the MeV Background

    Get PDF
    The Cosmic Gamma-ray Background (CGB) in the MeV regime has been measured with COMPTEL and SMM. The origin of the CGB in this energy regime is believed to be dominated by gamma-rays from Type Ia supernovae. We calculate the CGB spectrum within the framework of FRW cosmology as a function of the cosmic star formation rate, SFR(z). Several estimates of the SFR(z) have been reported since the pioneering work of Madau et al. Here we discuss observational constraints on SFR(z) derived from models of the CGB. In particular, we consider the SFR obtained from Gamma-Ray Burst observations, which increases dramatically with redshift beyond z ~ 1 in contrast to most estimates which saturate or show a mild increase with redshift. Gamma-ray bursts may be the most powerful tracers of star formation in the early universe and thus provide signposts of the initial epoch of element synthesis. The star formation rate implied by GRB statistics results in a gamma-ray background that matches the observations more closely than that inferred from other tracers of star formation. This may provide some support for the GRB/SFR-paradigm, which in turn promises a powerful diagnostic of star formation, and thus cosmic chemical evolution, from the era of Population III stars to the present

    Magnetohydrodynamic Effects in Propagating Relativistic Ejecta: Reverse Shock and Magnetic Acceleration

    Get PDF
    We solve the Riemann problem for the deceleration of arbitrarily magnetized relativistic ejecta injected into a static unmagnetized medium. We find that for the same initial Lorentz factor, the reverse shock becomes progressively weaker with increasing magnetization s (the Poynting-to-kinetic energy flux ratio), and the shock becomes a rarefaction wave when s exceeds a critical value, sc, defined by the balance between the magnetic pressure in the ejecta and the thermal pressure in the forward shock. In the rarefaction wave regime, we find that the rarefied region is accelerated to a Lorentz factor that is significantly larger than the initial value. This acceleration mechanism is due to the strong magnetic pressure in the ejecta

    Higher order curvature generalisations of Bartnick-McKinnon and coloured black hole solutions in d=5d=5

    Get PDF
    We construct globally regular as well as non-abelian black hole solutions of a higher order curvature Einstein-Yang-Mills (EYM) model in d=5d=5 dimensions. This model consists of the superposition of the first two members of the gravitational hierarchy (Einstein plus first Gauss-Bonnet(GB)) interacting with the superposition of the first two members of the SO(d)SO(d) Yang--Mills hierarchy.Comment: 13 Revtex pages, 5 PS figures; discussions extended, reference adde

    Rotating regular solutions in Einstein-Yang-Mills-Higgs theory

    Get PDF
    We construct new axially symmetric rotating solutions of Einstein-Yang-Mills-Higgs theory. These globally regular configurations possess a nonvanishing electric charge which equals the total angular momentum, and zero topological charge, representing a monopole-antimonopole system rotating around the symmetry axis through their common center of mass.Comment: 7 pages, 4 figures: misprints correcte

    The Supernova Relic Neutrino Background

    Full text link
    An upper bound to the supernova relic neutrino background from all past Type II supernovae is obtained using observations of the Universal metal enrichment history. We show that an unambiguous detection of these relic neutrinos by the Super-Kamiokande detector is unlikely. We also analyze the event rate in the Sudbury Neutrino Observatory (where coincident neutrons from anti-nu_e + D --> n + n + e+ might enhance background rejection), and arrive at the same conclusion. If the relic neutrino flux should be observed to exceed our upper bound and if the observations of the metal enrichment history (for z<1) are not in considerable error, then either the Type II supernova rate does not track the metal enrichment history or some mechanism may be responsible for transforming anti-nu_{mu,tau} --> anti-nu_e.Comment: Matches version accepted for publication in Phys. Rev.

    Scaling analysis of a divergent prefactor in the metastable lifetime of a square-lattice Ising ferromagnet at low temperatures

    Full text link
    We examine a square-lattice nearest-neighbor Ising quantum ferromagnet coupled to dd-dimensional phonon baths. Using the density-matrix equation, we calculate the transition rates between configurations, which determines the specific dynamic. Applying the calculated stochastic dynamic in Monte Carlo simulations, we measure the lifetimes of the metastable state. As the magnetic field approaches H/J=2|H|/J=2 at low temperatures, the lifetime prefactor diverges because the transition rates between certain configurations approaches zero under these conditions. Near H/J=2|H|/J=2 and zero temperature, the divergent prefactor shows scaling behavior as a function of the field, temperature, and the dimension of the phonon baths. With proper scaling, the simulation data at different temperatures and for different dimensions of the baths collapse well onto two master curves, one for H/J>2|H|/J>2 and one for H/J<2|H|/J<2.Comment: published versio

    Prospects of gravitational-wave follow-up through a wide-field ultraviolet satellite: A Dorado case study

    Get PDF
    The detection of gravitational waves from the binary neuron star merger GW170817 and electromagnetic counterparts GRB170817A and AT2017gfo kick-started the field of gravitational-wave multimessenger astronomy. The optically red to near-infrared emission ("red" component) of AT2017gfo was readily explained as produced by the decay of newly created nuclei produced by rapid neutron capture (a kilonova). However, the ultraviolet to optically blue emission ("blue" component) that was dominant at early times (up to 1.5 days) received no consensus regarding its driving physics. Among many explanations, two leading contenders are kilonova radiation from a lanthanide-poor ejecta component and shock interaction (cocoon emission). In this work, we simulate AT2017gfo-like light curves and perform a Bayesian analysis to study whether an ultraviolet satellite capable of rapid gravitational-wave follow-up, could distinguish between physical processes driving the early "blue" component. We find that ultraviolet data starting at 1.2 hr distinguishes the two early radiation models up to 160 Mpc, implying that an ultraviolet mission like Dorado would significantly contribute to insights into the driving emission physics of the postmerger system. While the same ultraviolet data and optical data starting at 12 hr have limited ability to constrain model parameters separately, the combination of the two unlocks tight constraints for all but one parameter of the kilonova model up to 160 Mpc. We further find that a Dorado-like ultraviolet satellite can distinguish the early radiation models up to at least 130 (60) Mpc if data collection starts within 3.2 (5.2) hr for AT2017gfo-like light curves

    The host galaxy of the short GRB 050709

    Get PDF
    The host of the short gamma-ray burst (GRB) 050709 is a morphologically disturbed low-luminous galaxy. At a redshift of z = 0.16, it belongs to one of the cosmologically nearest short-GRB hosts identified to date. Consequently, it represents a promising target for sensitive, spatially resolved observational studies. We have used the Multi Unit Spectroscopic Explorer (MUSE) mounted at the Very Large Telescope to characterize the GRB host galaxy. In addition, we performed deep radio-continuum observations of the host with the Australia Telescope Compact Array (ATCA) and with ALMA at 1.3 mm. Moreover, we made use of archival Spitzer Space Telescope 24 μm and Hubble Space Telescope/F814W imaging data of this galaxy. The spatially resolved MUSE data reveal that the entire host is a source of strong line emission, in particular from Hα and [O II

    The polarization evolution of the optical afterglow of GRB 030329

    Get PDF
    We report 31 polarimetric observations of the afterglow of GRB 030329 with high signal-to-noise and high sampling frequency. The data imply that the afterglow magnetic field has small coherence length and is mostly random, probably generated by turbulence.Comment: 2003 GRB Conference, Santa Fe, Oct. 2003, 1 ps-figur
    corecore