35 research outputs found

    Earthworm Diversity, Forest Conversion and Agroforestry in Quang Nam Province, Vietnam

    No full text
    The conversion of natural forests to different land uses still occurs in various parts of Southeast Asia with poor records of impact on ecosystem services and biodiversity. We quantified such impacts on earthworm diversity in two communes of Quang Nam province, Vietnam. Both communes are situated within buffer zones of a nature reserve where remaining natural forests are under threat of continued conversion. We identified 25 different earthworm species, out of which 21 were found in natural forests, 15 in agroforestry, 14 in planted forests, and seven each in annual croplands and home gardens. Out of the six species that were omnipresent inhabitants of all observed habitats, Pontoscolex corethrurus largely dominated habitats with intensive anthropogenic activities but was rare in natural forests. Natural and regenerated forests had a much denser earthworm population in the top 10 cm of soil rather than in deeper soil layers. We conclude that the conversion of natural forests into different land uses has reduced earthworm diversity which can substantially affect soil health and ecosystem functions in the two communes. Protection of the remaining natural forests is urgent, while the promotion of a tree-based farming system such as agroforestry can reconcile earthworm conservation and local livelihoods

    Cockayne syndrome without UV-sensitivity in Vietnamese siblings with novel <em>ERCC8</em> variants.

    Get PDF
    Cockayne syndrome (CS) is a rare progeroid disorder characterized by growth failure, microcephaly, photosensitivity, and premature aging, mainly arising from biallelic ERCC8 (CS-A) or ERCC6 (CS-B) variants. In this study we describe siblings suffering from classical Cockayne syndrome but without photosensitivity, which delayed a clinical diagnosis for 16 years. By whole-exome sequencing we identified the two novel compound heterozygous ERCC8 variants c.370_371del (p.L124Efs*15) and c.484G&gt;C (p.G162R). The causality of the ERCC8 variants, of which one results in a frameshift and the other affects the WD3 domain, was tested and confirmed by a rescue experiment investigating DNA repair in H2O2 treated patient fibroblasts. Structural modeling of the p.G162R variant indicates effects on protein-protein interaction. This case shows the importance to test for ERCC6 and ERCC8 variants even if patients do not present with a complete CS phenotype
    corecore