10 research outputs found

    Nanoscale waveguiding methods

    Get PDF
    While 32 nm lithography technology is on the horizon for integrated circuit (IC) fabrication, matching the pace for miniaturization with optics has been hampered by the diffraction limit. However, development of nanoscale components and guiding methods is burgeoning through advances in fabrication techniques and materials processing. As waveguiding presents the fundamental issue and cornerstone for ultra-high density photonic ICs, we examine the current state of methods in the field. Namely, plasmonic, metal slot and negative dielectric based waveguides as well as a few sub-micrometer techniques such as nanoribbons, high-index contrast and photonic crystals waveguides are investigated in terms of construction, transmission, and limitations. Furthermore, we discuss in detail quantum dot (QD) arrays as a gain-enabled and flexible means to transmit energy through straight paths and sharp bends. Modeling, fabrication and test results are provided and show that the QD waveguide may be effective as an alternate means to transfer light on sub-diffraction dimensions

    Fabrication of Nickel Nanostructure Arrays Via a Modified Nanosphere Lithography

    Get PDF
    In this paper, we present a modified nanosphere lithographic scheme that is based on the self-assembly and electroforming techniques. The scheme was demonstrated to fabricate a nickel template of ordered nanobowl arrays together with a nickel nanostructure array-patterned glass substrate. The hemispherical nanobowls exhibit uniform sizes and smooth interior surfaces, and the shallow nanobowls with a flat bottom on the glass substrate are interconnected as a net structure with uniform thickness. A multiphysics model based on the level set method (LSM) was built up to understand this fabricating process by tracking the interface between the growing nickel and the electrolyte. The fabricated nickel nanobowl template can be used as a mold of long lifetime in soft lithography due to the high strength of nickel. The nanostructure–patterned glass substrate can be used in optical and magnetic devices due to their shape effects. This fabrication scheme can also be extended to a wide range of metals and alloys

    Extremely asymmetrical scattering of optical waves in nonuniform periodic Bragg arrays

    No full text
    The extremely asymmetrical scattering (EAS) of bulk and guided electromagnetic waves in nonuniform periodic Bragg arrays with steplike variations of the grating amplitude is analyzed theoretically by means of a recently developed approach based on allowance for the diffractional divergence of the scattered wave. Arrays of finite and infinite widths are investigated. It is shown that, for thin non-uniform arrays, EAS has the same pattern as for uniform arrays with mean grating amplitude. On the contrary, for wide nonuniform arrays, the scattered wave amplitudes are well determined by local values of the grating amplitude. In this case, the energy of the scattered wave is shown to concentrate mainly in regions with smaller grating amplitude. The sensitivity of EAS to small imperfections of periodic arrays is investigated theoretically. The physical explanation of the observed effects is based on the diffractional divergence of the scattered wave

    Compact-2D FDTD for Waveguides Including Materials with Negative Dielectric Permittivity, Magnetic Permeability and Refractive Index

    Get PDF
    An efficient compact-2D finite-difference time-domain method is presented for the numerical analysis of guided modes in waveguides that may include negative dielectric permittivity, negative magnetic permeability and negative refractive index materials. Both complex variable and real variable methods are given. The method is demonstrated for the analysis of channel-plasmon-polariton guided modes in triangular groves on a metal surface. The presented method can be used for a range of waveguide problems that were previously unsolvable analytically, due to complex geometries, or numerically, due to computational requirements of conventional three-dimensional finite-difference time-domain methods. A 3-dimensional finite-difference time-domain algorithm that also allows analysis in the presence of bound or free electric and equivalent magnetic charges is presented and an example negative refraction demonstrates the method

    Adiabatic Nano-Focusing of Plasmons by Sharp Metallic Wedges

    Get PDF
    This paper demonstrates the possibility of efficient adiabatic nano-focusing of plasmons by a sharp triangular metal wedge. Geometrical optics approach and the approximation of continuous electrodynamics are used for the analysis. In particular, it is demonstrated that both the phase and group velocities of an incident anti-symmetric (with respect to the magnetic field) plasmon tend to zero at the tip of the wedge, and the plasmon adiabatically slows down, eventually dissipating in the metal. Typically, the amplitude of the plasmon significantly increases near the wedge tip, but this increase is finite even in the absence of dissipation in the metal. The dependence of the local field enhancement near the tip on structural parameters, dissipation in the metal, angle of incidence, etc. is analyzed in this paper. It is also shown that an anti-symmetric film plasmon can effectively be guided by a triangular metal wedge, forming a wedge plasmon mode that is localized near the tip of the wedge and propagates along this tip. A new existence condition for these localized wedge plasmons is derived and discussed
    corecore