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ABSTRACT 

 This paper demonstrates the possibility of efficient adiabatic nano-focusing of 

plasmons by a sharp triangular metal wedge. Geometrical optics approach and the 

approximation of continuous electrodynamics are used for the analysis. In particular, it is 

demonstrated that both the phase and group velocities of an incident anti-symmetric (with 

respect to the magnetic field) plasmon tend to zero at the tip of the wedge, and the 

plasmon adiabatically slows down, eventually dissipating in the metal. Typically, the 

amplitude of the plasmon significantly increases near the wedge tip, but this increase is 

finite even in the absence of dissipation in the metal. The dependence of the local field 

enhancement near the tip on structural parameters, dissipation in the metal, angle of 

incidence, etc. is analyzed in this paper. It is also shown that an anti-symmetric film 

plasmon can effectively be guided by a triangular metal wedge, forming a wedge plasmon 

mode that is localized near the tip of the wedge and propagates along this tip. A new 

existence condition for these localized wedge plasmons is derived and discussed.  

 

PACS codes: 78.67.–n;  68.37.Uv;  73.20.Mf  

 



1. Introduction 

Nano-focusing of light is localization of electromagnetic energy in regions with 

dimensions that are significantly smaller than the wavelength. This is one of the central 

problems of modern near-field optical microscopy that takes the resolution of optical 

imaging beyond the diffraction limit of light [1-14]. It is also important for the 

development of new optical sensors and delivery of strongly localized photons to tested 

molecules/atoms (e.g., for local spectroscopic measurements [13-19]). Nano-focusing is 

also one of the major tools for efficient coupling of light and light-carried information into 

sub-wavelength waveguides, interconnectors and nano-optical devices [20].  

One of the most common approaches to nano-focusing of light is based on the use 

of strongly localized surface plasmons in metallic nano-structures, such as sharp metal 

tips [7,10,14], dielectric conical tips covered with metal film [4,11-13], conical and 

pyramidal tips covered in metal film with nano-aperture [9,12,21-24], etc. These are the 

structures commonly used in scanning near-field optical microscopy. In addition, nano-

focusing of plasmons in metallic nano-structures is usually accompanied by strong 

enhancement of local electromagnetic field, especially near sharp metallic tips and 

dielectric tips covered with metal [4,7,10,13,14]. This provides an interesting opportunity 

to develop new optical sensors based on the local field enhancement. For example, several 

papers have reported Raman spectroscopy from molecules near a sharp metal tip with 

nano-focusing [14-18]. Thus, strong enhancement of the local field that can be achieved 

during nano-focusing [7,10,14,20] may be used for possible development of new SERS 

sensors capable of single molecule detection with sub-wavelength resolution (if used in 

combination with a scanning near-field optical microscope).  



Nano-focusing of plasmons by means of nano-tips is analogous to a spherical lens, 

because in both these cases the electromagnetic energy is focused into a region localized 

in two dimensions (like a circular spot). However, in the case of a spherical lens, this 

region cannot be smaller than half-the-wavelength of the focused radiation (the diffraction 

limit of light), while for a metallic nano-tip, the region of localization may be arbitrarily 

small (in the approximation of the continuous electrodynamics and absence of dissipation 

in the metal) [7,10,14]. Similarly, nano-focusing of plasmons by metallic wedges and V-

grooves [20,25] should be analogous to a conventional cylindrical lens, because these 

structures focus the light into regions that are localized only in one direction (like a thin 

strip). The minimal width of this strip for a conventional cylindrical lens is limited by 

half-the-wavelength in the medium, while for nano-focusing by a metallic groove this 

strip can be arbitrarily narrow (in the approximation of the continuous electrodynamics) 

[20].  

Theoretical analysis of nano-focusing of plasmons by a sharp groove was 

conducted in the geometrical optics approximation (GOA) [20] and using the approximate 

solution in the cylindrical coordinates [25]. The analysis conducted in [25] is also directly 

applicable for the investigation of nano-focusing by sharp metal wedges. However, the 

applicability of this method is highly restrictive, so that the developed approximate theory 

is valid only in the close proximity (typically, within a few tens of nanometers) of the tip 

of the wedge/groove [25]. The applicability conditions for the GOA approach are much 

less restrictive, and it is usually applicable for a much broader range of structural 

parameters [20]. However, the conducted analysis based on GOA [20] was limited only to 

nano-focusing in metallic grooves. No detailed investigation of plasmon propagation and 

nano-focusing in sharp metallic wedges has been conducted so-far.  



Therefore, the aim of this paper is to develop a theory of nano-focusing of strongly 

localized plasmons by a sharp metal wedge in the geometrical optics (adiabatic) 

approximation. In particular, it will be demonstrated that only plasmons with anti-

symmetric distribution of the magnetic field across the wedge will experience nano-

focusing with their phase and group velocities asymptotically tending to zero as the 

plasmon approaches the tip of the wedge. The effect of dissipation in the metal will be 

investigated in detail, and the optimization of structural parameters will be described. 

Some important applicability conditions for strongly localized wedge plasmons [26] 

guided by the tip of a wedge will also be determined and discussed. Comparison with the 

plasmons in sharp V-grooves will be carried out.  

2. Geometrical Optics Approximation 

Consider an infinite metal wedge with the angle γ and complex permittivity ε2 = e1 

+ ie2 (e1 < 0, e2 > 0), surrounded by a dielectric medium with real and positive dielectric 

permittivity ε1, such that e1 > ε1 (the existence condition for surface and film plasmons 

[27,28]). The angle of the wedge is assumed to be sufficiently small (the specific 

conditions restricting the wedge angle are presented below). The coordinate axes are as 

indicated in the figure.  

Consider two surface plasmons of the same frequency on the opposite sides of the 

wedge, both propagating towards the tip of the wedge at the same angle of incidence θ 

with respect to the y-axis. At a large distance from the tip of the wedge, where these 

plasmons can be regarded uncoupled, the angle of incidence is equal to θ0 (Fig. 1b). As 

the two plasmons travel towards the tip of the wedge, the thickness of the wedge 

decreases, and the plasmons couple across the wedge. The wedge is effectively a metal 



film (membrane) with varying thickness. Therefore, the coupled plasmons form a film 

plasmon.  

There are two types of film plasmon – with the symmetric and anti-symmetric 

distributions of the magnetic field with respect to the middle plane of the film 

(membrane). We will refer to these plasmons as symmetric and anti-symmetric film 

plasmons, respectively. This is similar to the terminology used in [20] for the symmetric 

and anti-symmetric gap plasmons. The dispersion relationships for the symmetric and 

anti-symmetric film plasmons, respectively, are given by the equations [28]: 
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are the reciprocal penetration depths of the plasmon into the dielectric and metal, 

respectively, q = Q1 + iQ2 is the complex wave number of the plasmon (Q2 determines 

dissipation of the plasmon), k0 = ω/c is the wave number in vacuum, and f is the thickness 

of the film (membrane):  

)2/tan(2 γyf = ,         (4) 

Note that Eqs. (1) and (2) are also valid for the description of the coupled 

plasmons in a dielectric gap (with the permittivity ε1 between two identical metals with 

the permittivities ε2) [28]. However, in that case, Eq. (1) gives the dispersion of the anti-



symmetric gap plasmon, whereas Eq. (2) determines the dispersion of the symmetric gap 

plasmon [20].  

In this paper, we assume that dissipation of the plasmons is weak, i.e. e2 << e1 

and Q2 << Q1. The opposite case is not interesting, because if dissipation is strong, the 

plasmon will not be able to propagate noticeable distances in the structure and experience 

effective nano-focusing. 

 As the anti-symmetric or symmetric film plasmon propagates towards the tip of 

the wedge, it experiences changing thickness of the wedge (film). This means that the 

effective dielectric permittivity of the structure εeff = (q/k0)
2 also changes, because the 

wave number of the plasmon q depends on changing thickness of the wedge (film). 

Propagation of the film plasmon can be considered in the geometrical optics 

approximation (GOA) (or, using the terminology of quantum mechanics, in the WKB 

approximation), if variations of the wave vector of the plasmon are small within distances 

of the order of one wavelength in the structure [7,20,29]:  

|d(Q1y
-1)/dy| << 1,         (5) 

where Q1y is the y-component of the real part of the wave vector q of the plasmon in the 

structure (Fig. 1b). In this case, the wedge is actually a metal film with slowly changing 

thickness. Therefore, at all points where condition (5) is satisfied, the parameters of the 

film plasmon (including its dispersion, dissipation and field structure) can be 

approximately determined by considering this plasmon in a uniform film of thickness that 

is equal to the local thickness of the wedge at the considered point. In this case, 

propagation of the plasmon in the wedge can be represented by a plasmon ray, i.e., a 



curve such that the wave vector of the film plasmon is parallel to the curve at every point. 

An example of such a ray for the anti-symmetric film plasmon is shown in Fig. 1b.  

 For weak dissipation, numerical solution of the dispersion relationships (1), (2) 

gives real parts Q1 of the plasmon wave numbers as functions of local thickness of the 

triangular silver wedge for anti-symmetric (Fig. 2a) and symmetric (Fig. 2b) film 

plasmons. The dependencies in Figs. 2a,b are presented for different permittivities of the 

surrounding dielectric and different wavelengths resulting in different real parts of the 

metal permittivities.  

In particular, it can be seen that the wave numbers of the anti-symmetric film 

plasmons tend to infinity with decreasing thickness of the wedge (film) to zero, i.e., with 

decreasing distance to the tip of the wedge. On the contrary, the wave numbers of the 

symmetric plasmons are relatively unaffected by decreasing thickness of the wedge (Fig. 

2b). In fact, the wave numbers of the symmetric plasmons reduce to the wave numbers of 

the bulk waves in the surrounding dielectric, as wedge thickness tends to zero near the tip. 

Thus the variation of the wave number of a symmetric film plasmon may only occur 

between the wave number of the plasmon on an isolated metal-dielectric interface and the 

wave number of the bulk wave in the surrounding dielectric (Fig. 2b). This is also the 

reason for decreasing the effect of wedge thickness on the wave numbers of the 

symmetric plasmons, when the ratio e1/ε1 is increased. In this case, the wave number of 

the surface plasmon on the isolated metal-dielectric interface becomes closer to the wave 

number of the bulk wave in the surrounding dielectric, resulting in decreasing range of 

possible wave numbers of the symmetric film plasmon (compare curves 1 – 4 in Fig. 2b).  

For comparison, wave numbers of the symmetric and anti-symmetric gap 

plasmons propagating in a sufficiently sharp V-groove in silver are shown as functions of 



local groove width in Figs. 3a,b for the same material parameters as in Figs. 2a,b (Fig. 3a 

is reproduced from [20]). In particular, it can be seen that the dependencies of the wave 

numbers of anti-symmetric plasmons in sharp metal wedges are very similar to those for 

the symmetric gap plasmons in sharp V-grooves (compare Figs. 2a and 3a). This suggests 

significant similarities in nano-focusing of these plasmons by wedges and grooves. 

Indeed, both these figures demonstrate that anti-symmetric plasmons in sharp triangular 

wedges and symmetric plasmons in V-grooves (see also [20]) experience adiabatic 

stopping near the tip. This will occur for all angles of incidence θ0 < π/2 (Fig. 1b). As the 

anti-symmetric film plasmon propagates towards the tip of the wedge, the y-component 

Q1y of the real part Q1 of its wave vector q increases to infinity, while the x-component 

remains constant (due to Snell’s law and uniformity of the wedge along the x-axis – Fig. 

1a). Therefore, irrespective of the initial incidence angle θ0 (as long as θ0 < π/2), the wave 

vector of the anti-symmetric wedge plasmon near the tip is perpendicular to the x-axis, 

which makes the plasmon ray turn perpendicular to the tip of the wedge (Fig. 1b). Note 

however, that these conclusions are correct only if the applicability condition (5) for GOA 

is satisfied for all values of y. In this case, no reflection occurs from the tip of the wedge; 

the plasmon propagating towards the tip adiabatically slows down, and eventually 

dissipates in the metal. This occurs in a very similar fashion as for symmetric plasmons in 

sufficiently sharp V-grooves [20].  

Near the tip, the local thickness of the wedge tends to zero. In this case, if the 

condition  

fRe(α2) << 1,           (6) 

then Eq. (2) (for the anti-symmetric film plasmon) gives:  



 Q1 ≈ – 2ε1/(e1f).         (7) 

Substituting Eq. (7) back into condition (6), it can be seen that at f → 0 (i.e., near 

the tip of the wedge), condition (6) can be satisfied only if ε1/e1 << 1, which is usually 

the case for good metals. This is also the applicability condition for the asymptotic 

behavior of the wave number of the anti-symmetric film plasmon (Eq. (7)) near the tip of 

the wedge.  

On the contrary, the dependencies of the wave numbers of the symmetric film 

plasmons and anti-symmetric gap plasmons (Figs. 2b and 3b) are quite different. As 

indicated above, near the tip of the wedge (i.e., where f → 0) the wave number of the 

symmetric film plasmon tends to the wave number of the bulk wave in the surrounding 

dielectric (Fig. 2b). In this case, the penetration depth of the symmetric film plasmon into 

the surrounding dielectric tends to infinity, and the film plasmon turns into a non-

localized bulk wave in the dielectric. Therefore, symmetric film plasmons cannot be used 

for nano-focusing in sharp wedges.  

The wave number of the anti-symmetric gap plasmon becomes zero at the cut-off 

gap width (Fig. 3b), below which the gap plasmon does not exist as a propagating wave. 

This plasmon can still be localized beyond the diffraction limit with the region of 

localization limited by the cut-off gap width. For example, this cut-off width for curve 1 

in Fig. 3b is ~ 200 nm. However, anti-symmetric gap plasmons cannot experience 

unlimited (in the absence of dissipation) adiabatic nano-focusing like symmetric gap 

plasmons and anti-symmetric film plasmons.  

The above analysis is valid if the applicability condition for GOA (Eq. (5)) is 

satisfied. Fig. 4 presents the typical dependencies of the applicability term in the left-hand 



side of Eq. (5) on the y-coordinate (distance from the tip) for the anti-symmetric film 

plasmon (Fig. 4a), symmetric film plasmon (Fig. 4b), and anti-symmetric gap plasmon 

(Fig. 4c). The structural and material parameters are as indicated in the figure caption. 

The similar dependencies for the symmetric gap plasmon are presented in [20]. GOA is 

only applicable when the presented curves in Figs. 4a-c are noticeably below 1. For 

example, for the structures corresponding to curves 3 – 5 in Fig. 4a (i.e. for the anti-

symmetric film plasmon), GOA is applicable at all distances from the tip of the wedge, 

because these curves are noticeably below 1 at all values of y. However, for the wedges 

corresponding to curves 1-2, GOA is only applicable for distances above the tip y ≳ 0.2 

µm. This is again similar to symmetric gap plasmons in sharp V-grooves [20].  

GOA is very well applicable for the analysis of symmetric film plasmons in the 

considered sharp wedges at all distances from the tip, which follows from Fig. 4b. Near 

the tip, the wave numbers of these plasmons tend to the wave numbers of bulk waves in 

the surrounding dielectric (Fig. 2b). Therefore, at small distances from the tip, variations 

of these wave numbers within distances of the order of one wavelength become 

negligible, and the applicability term tends to zero (Fig. 4b). However, it is important to 

note that these symmetric film plasmons are useless from the view-point of nano-

focusing, as they are very weakly localized near the tip of the wedge.  

On the contrary, for the anti-symmetric gap plasmon in a sharp V-groove, the 

applicability term turns to infinity at the cut-off thickness of the gap. This is also 

expected, because at this thickness the wave number of the anti-symmetric gap plasmon 

turns to zero (see Fig. 3b and its discussion). The corresponding wavelength becomes 

infinite, and even for arbitrarily sharp grooves variation of the structural parameters (e.g., 



width of the groove) within one wavelength becomes infinitely large, resulting in the 

applicability term in the left-hand side of Eq. (5) also turning to infinity (Fig. 4c).  

Note also that, as follows from Figs. 4a-c, decreasing magnitude of the real part of 

the metal permittivity and increasing permittivity of the dielectric in contact result in 

improving applicability of GOA for anti-symmetric film plasmons (Fig. 4a), symmetric 

and anti-symmetric gap plasmons (see Fig. 4c and [20]), but has the opposite effect for the 

symmetric film plasmons (Fig. 4b). This is because the symmetric film plasmons 

experience larger range of variations of their wave numbers, if e1 is decreased and ε1 is 

increased (see above). This results in larger variations of the wave parameters within one 

wavelength in the structure, leading to worsening of the GOA applicability. On the other 

hand, for example, for anti-symmetric film plasmons, reducing e1 and increasing ε1 

results in decreasing penetration depth of the plasmons into the metal wedge. This leads to 

decreasing coupling between the plasmons across the wedge, and thus decreasing the 

effect of changing wedge thickness. Therefore, the applicability conditions for GOA are 

easier to satisfy. It is also obvious that decreasing wedge (gap) angle also result in 

improving applicability of GOA for all structures.  

Furthermore, for all the types of coupled plasmons in wedges/grooves, GOA is 

always applicable at relatively large distances from the tip (large values of y). This is 

because the surface plasmons forming the coupled film or gap plasmons are not strongly 

coupled across the wedge/gap of sufficiently large thickness/width. Therefore, variations 

of this thickness/width does not have a significant effect on the plasmons, resulting in 

good applicability of GOA. Thus, applicability of GOA is generally improved at 

sufficiently large distances from the tip – Figs. 4a-c (see also [20]). This is a significantly 

distinguishing feature between GOA and the previously developed approximate method 



of analysis of plasmons in sharp wedges/grooves, that is normally applicable only in the 

immediate proximity of the tip [25].  

As discussed above, near the tip of the wedge, the wave vector of the anti-

symmetric plasmon is always perpendicular to the tip (Fig. 1b). This is because Q1y 

becomes very large (see Eq. (7)) when f → 0, i.e. near the tip. In this case, Q1y ≈ Q1. 

Using this relationship together with Eqs. (4) and (7), condition (5) can be reduced as  
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or  

γ << γc2 = – 2ε1/e1,         (9) 

where γc2 is the critical angle of the wedge, such that GOA is applicable only for wedge 

angles that are noticeably smaller than γc2 (the reason for using the index 2 will be clear 

below). For a silver wedge in vacuum at λvac = 0.6328 µm (He-Ne laser), we have e1 = – 

16.22 [30,31], and γc2 ≈ 7o. For example, curve 3 in Fig. 4a is lies significantly below 1, as 

this curve corresponds to the silver wedge with γ = 2o < γc2.  

Eqs. (8) and (9) are again similar to those obtained for symmetric plasmons in 

sharp V-grooves [20], as well as the dependencies in Fig. 4a (that are similar to the same 

applicability curves obtained for symmetric gap plasmons in [20]). In the same way as for 

the symmetric gap plasmons [20], all the curves in Fig. 4a tend to plateaus at small 

distances from the tip. These plateaus are determined by the ratio in the left-hand side of 

Eq. (8), which does not depend on local wedge thickness f.  



If the condition γ << γc2 is not satisfied, then the anti-symmetric film plasmon will 

experience significant reflections in the wedge as it propagates towards the tip. Physically, 

these reflections will occur at every point on the ray where the applicability condition for 

GOA is not satisfied. Decreasing real part of the metal permittivity e1 and increasing 

permittivity ε1 of the surrounding dielectric medium result in increasing critical angle γc2, 

and the GOA applicability condition for the anti-symmetric film plasmon becomes less 

restrictive (Fig. 4a). 

3. Plasmon Rays 

Plasmon rays are determined by the angle θ between the plasmon wave-vector and 

the y-axis (Figure 1b). The algorithm for the determination and plotting of plasmon rays 

for the anti-symmetric film plasmons is the same as for the symmetric gap plasmons [20]. 

It can briefly be outlined as follows: if we know the position of some point with the 

coordinates (x,y) on the ray, then the position of the next point with the coordinated (x + 

dx, y + dy) on the same ray is determined by the angle θ at the point (x,y) and the value of 

dy. Thus, the plasmon ray can be determined if we know the position of some initial point 

through which the plasmon ray propagates (for more detailed discussion of the algorithm 

see [20]). Suppose that this point is chosen on the y-axis. Then the typical plasmon rays 

for different incidence angles θ0 and different wedge angles are presented in Fig. 5a. 

For comparison, plasmon rays in the inversed structure, i.e., a metal groove rather 

than a wedge, are presented in Fig. 5b for the symmetric gap plasmons [20]. The angles of 

the silver wedge in vacuum (Fig. 5a), and vacuum groove in a silver substrate (Fig. 5b) 

are the same for the corresponding sets of curves. As can be seen, the rays of the anti-

symmetric film plasmon in a wedge and symmetric gap plasmon in a groove are 

orthogonal to the x-axis at y = 0. However, in the wedge, the plasmon rays start to bend 



when they come significantly closer to the tip than in grooves, and thus the anti-

symmetric film plasmon reaches the tip of the wedge at a larger value of x than the 

corresponding symmetric gap plasmon (compare Figs. 5a,b). This is because film 

plasmons are formed by surface plasmons coupled across the metal wedge, while the gap 

plasmons are formed by surface plasmons coupled across the vacuum gap. Plasmon 

penetration depth into the metal is smaller than in vacuum, which means that coupling in 

the film plasmon weakens faster with increasing thickness of the wedge than coupling in 

the gap plasmon with increasing width of the gap. As a result, the wave number in the 

anti-symmetric film plasmon decreases faster with increasing thickness of the wedge, and 

coupling across the wedge has a significant effect on the wave number only in the region 

significantly closer to the tip (Fig. 5a) than for symmetric gap plasmons (Fig. 5b).  

4. Nano-focusing of plasmons  

As the anti-symmetric film plasmon approaches the tip of the wedge, it 

adiabatically slows down, i.e., its phase and group velocities turn to zero (similar to the 

symmetric gap plasmon in a metallic gap [20]). This means that the anti-symmetric 

plasmon experiences infinite (in the approximation of continuous electrodynamics) nano-

focusing as it propagates towards the tip of the wedge.  

The amplitude of the anti-symmetric film plasmon as it propagates towards the tip 

of the wedge is determined by the same procedure that has been developed for nano-

focusing of the symmetric plasmon in a sharp V-groove [20]. Let us first assume that 

dissipation in the metal is zero, i.e., ε2 = e1 is real and negative. Because the structure is 

uniform along the x-axis (along the tip of the wedge), the energy conservation gives [20]:  

 S0cosθ0 = Scosθ,         (10) 



where S0 is the energy flux in the film plasmon at large distance from the tip of the wedge 

where the anti-symmetric film plasmon is represented by two uncoupled surface plasmons 

(Fig. 1b), and S and θ are the energy flux and angle of propagation of the plasmon at an 

arbitrary point on the plasmon ray. Note again that Eq. (10) is valid only in the 

assumption of zero dissipation in the metal.  

 The energy flux S in the anti-symmetric film plasmon at an arbitrary wedge 

thickness f is given by the Poynting vector averaged over the period of the wave 2π/ω and 

integrated over the z-coordinate from – ∞ to + ∞:  
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where H20 is the amplitude of the magnetic field at either of the metal interfaces at the 

considered distance from the tip, and  
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 Thus, in order to obtain the amplitude of the incident anti-symmetric plasmon as a 

function of distance from the tip of the wedge in the absence of dissipation, we use the 

following procedure [20]. Determine (numerically) Q1 from Eq. (2) for different values of 

f (Fig. 2a), which automatically gives the dependence of Q1 on y – see Eq. (4). Use the 

Snell law  

 Q01sinθ0 = Q1sinθ         (13) 

(where Q01 is the real part of the wave number q0 = Q01 + iQ02 of the film plasmon at y → 

+ ∞) to determine the angle θ between the wave vector of the anti-symmetric plasmon and 

the y-axis. Calculate S(y) from Eq. (11), and use Eq. (10) to determine the amplitude of 



the plasmon H20(y), assuming that the amplitude of the incident plasmon at infinity H200 = 

1 (recall that we consider the structure without dissipation).  

Fig. 6 shows the typical y-dependencies of the amplitudes H20(y) of the anti-

symmetric film plasmons at zero dissipation in the metal (e2 = 0). Similar to the 

symmetric gap plasmons in sharp V-grooves [20], the anti-symmetric film plasmons also 

increase their amplitudes as they propagate towards the tip of the wedge (Fig. 6). 

However, this increase is not as strong as for the symmetric gap plasmons, and is only 

about ~ 1.5 – 2 times, compared to 4 – 12 times for the symmetric gap plasmons [20].  

The dependencies in Fig. 6 are plotted starting from 30 nm distance from the tip of 

the wedge. This is because at this distance the typical thickness of the wedge becomes ~ 1 

nm, and for smaller thicknesses the approximation of continuous electrodynamics is not 

applicable [32,33]. At the same time, as can be seen from Fig. 6, the maximal amplitudes 

of the film plasmons are achieved at distances of ~ 100 nm from the tip, where the 

developed theory is well applicable.  

Increasing the permittivity of the surrounding dielectric results in decreasing 

maximal plasmon amplitude (compare curves 2 and 4, and curves 1 and 3 in Fig. 6a). 

However, increasing the magnitude of the metal permittivity results in increasing 

efficiency of nano-focusing in terms of the local field enhancement (curves 1 and 4 in Fig. 

6a). This is very similar to what was predicted for the symmetric gap plasmon in a V-

groove [20]. Therefore, to increase local field enhancement near the tip of the wedge, one 

should increase the ratio |e1|/ε1. However, applicability of GOA worsens with increasing 

ratio |e1|/ε1 (Section 2), and this may eventually lead to noticeable reflections from the tip 

of the wedge (similar to the grooves for which GOA is not applicable [20,34]).  



Increasing θ0 results in decreasing local field enhancement near the tip (Fig. 6b). 

This is related to the fact that increasing angle of incidence θ0 results in decreasing y-

component of the energy flux in the incident plasmon. If dissipation is zero, then 

according to energy conservation, this flux component should remain constant (in GOA) 

along the plasmon ray [20]. On the other hand, when y → 0 the plasmon ray becomes 

normal to the tip of the wedge (see Figs. 1b, 5a). Therefore, near the tip, the energy flux in 

the plasmon is always perpendicular to the tip, i.e., parallel to the y-axis. This means that 

decreasing y-component of the incident energy flux (i.e., increasing θ0) causes decreasing 

energy flux in the plasmon near the tip, i.e., decreasing its amplitude – compare curves 1, 

3, 4 in Fig. 6b (see also [20]).  

Similar to nano-focusing in V-grooves [20], decreasing wedge angle results in 

increasing distance from the tip of the wedge, at which the maximal local field 

enhancement is achieved (compare cures 2 and 3 in Fig. 6b). This is because in GOA and 

in the absence of dissipation, the plasmon amplitude is determined by the size of the 

localization region where the energy is concentrated due to nano-focusing, but not by 

distance that the plasmon should travel to reach this localization region. On the other 

hand, plasmon localization depends on local thickness of the wedge (localization 

increases with decreasing local thickness), and the same wedge thicknesses are achieved 

at larger distances if the angle γ is decreased.  

Another similarity between nano-focusing in V-grooves [20] and sharp triangular 

wedges is that in both these cases the local enhancement of the field near the tip is finite, 

i.e., all the curves in Fig. 5 tend to plateaus when y → 0. However, the actual values of the 

field enhancement, corresponding to the plateaus, are significantly smaller for the wedges 

compared to the grooves. The plateaus of the plasmon amplitude in the wedge (Fig. 6) can 



be understood by considering Eq. (11) at f → 0 (which is equivalent to y → 0). In this 

case, Eq. (11) is reduced as  

2
20

1

2

8
H

c
S

πωε
≈ ,         (14) 

which is independent of y. As a result, the corresponding amplitude of the plasmon is also 

y-independent – see the plateaus in Fig. 6. The differences in the plateau height for gap 

plasmons [20] and film plasmons (Fig. 6) are due to the fact that Eq. (14) contains ε1 in 

the denominator, as opposed to e1 for the gap plasmons [20]. Indeed, Eq. (10) suggests 

that near the tip S0cosθ0 = S (because in this case θ = 0) for both the wedge and groove – 

see also [20]. For example, for the wedge, substituting here Eqs. (14) and (11), and 

assuming that the initial point is sufficiently far from the tip, so that there is no coupling 

between the plasmons on the wedge sides (α20f >> 1), we obtain the amplitude at the tip 

of the wedge:  

H20
2 = Q1ε1[(e1α20)

-1 + (ε1α10)
-1]H200

2cosθ0,  

where H200 is the amplitude of the incident plasmon at y → + ∞ (i.e., where α20f >> 1). 

Similar equation for the groove [20] gives  

H20
2 = Q1e1[(e1α20)

-1 + (ε1α10)
-1]H200

2cosθ0. 

From here, it is obvious that the amplitude of the adiabatically focused film plasmon at 

the tip of the wedge is (e1/ε1)
1/2 times smaller than that of the gap plasmon at the tip of 

the V-groove – compare Fig. 6 with Fig. 5 from [20].  

 It is important that enhancement of the local field near the tip of the wedge/gap is 

not the necessary condition for nano-focusing. Nano-focusing, i.e., localization of the 



electromagnetic energy in a region that is much smaller than the wavelength, may occur if 

there is no field enhancement (see, for example, curve 4 in Fig. 6b). However, the 

additional effect of field enhancement may be useful in practical applications such as 

design of new optical sensors, near-field optical microscopy and spectroscopy, etc.  

As has been shown in [20], dissipation in the metal may play a significant role in 

plasmon nano-focusing, especially for the local field enhancement. For arbitrary 

dissipation the metal permittivity ε2 = e1 + ie2 (e2 > 0) and the energy flux in the anti-

symmetric film plasmon at a given film thickness f can be written as: 
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where xp is the coordinate in the direction of plasmon propagation. As mentioned in [20], 

the amplitude of the plasmon H20 cannot be chosen to equal 1 at y = + ∞, because in this 

case it would have been zero at any finite value of y. Therefore, we choose that H20 = 1 at 

some reference point on the plasmon ray, and the specific choice of this point will be 

discussed below.  

In the case of weak dissipation, i.e., when e2 << e1 and Q2 << Q1, Eq. (2) gives 

for the anti-symmetric film plasmon:  
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where Q1 is determined numerically using Eq. (2) under the assumption that e2 = 0.  



The numerical procedure developed in [20] for the determination of the plasmon 

amplitude along a plasmon ray in the presence of dissipation can be directly applied for 

the analysis of nano-focusing of anti-symmetric film plasmons in sharp wedges. The 

resultant dependencies of the plasmon amplitudes on distance from the tip of the wedge 

are presented in Fig. 7 for silver wedges at different wavelengths.  

It can be seen that at large distances from the tip of the wedge, the amplitude of 

the film plasmon propagating towards the tip decreases exponentially, goes through a 

minimum, and then strongly increases reaching a maximum. Further decrease of distance 

to the tip of the wedge results in a monotonous decrease of the plasmon amplitude (Figs. 

7a,b). All the curves in Figs. 7a,b are normalized to the amplitude of the plasmon at the 

mentioned minimum. This means that the reference point with the amplitude H20 = 1 is 

always chosen at the minimum of the plasmon amplitude (Figs. 7a,b). 

The exponential decrease of the plasmon amplitude at large distances from the 

wedge tip can be explained by weak coupling of the surface plasmons forming the anti-

symmetric film plasmon at large thicknesses of the wedge. Because the coupling is weak, 

the predominant mechanism of changing plasmon amplitude is dissipation in the metal. 

When the plasmon comes closer to the tip, so that coupling across the wedge is significant 

(due to decreasing thickness of the wedge), the effect of nano-focusing increases (Fig. 6) 

and may overpower dissipation. As a result, the plasmon amplitude starts to increase. 

However, in the vicinity of the tip, the amplitude growth caused by nano-focusing ceases 

(see the plateaus in Fig. 6). As a result, if dissipation is sufficiently weak, the plasmon 

amplitude reaches a maximum at an optimal distance from the tip, and then monotonically 

decreases to zero when y → 0 (Fig. 7). If dissipation is increased the amplitude maximum 

decreases (Fig. 7), and eventually disappears altogether (curve 5 in Fig. 7a).  



Similar to the case with no dissipation (Fig. 6), Fig. 7b demonstrates that 

decreasing angle of incidence results in increasing maximal local field enhancement near 

the tip of the wedge. The explanation of this is similar to that presented for Fig. 6 with no 

dissipation. Increasing wedge angle also results in increasing local field enhancement 

(Fig. 7b). This is because increasing wedge angle causes more rapid variations of the 

wedge thickness. Therefore, in order to experience significant amplitude enhancement due 

to nano-focusing, the plasmon should travel smaller distance along the y-axis, which 

means smaller effect from dissipation. The distance from the tip, at which the maximum 

of the plasmon amplitude is reached, decreases with increasing wedge angle.  

As discussed in [20], the choice of normalization of the plasmon amplitude, so that 

it is equal to 1 at the local minimum (Figs. 7a,b), is useful, because it immediately shows 

the maximal possible enhancement of the plasmon field during nano-focusing. This 

enhancement is then given by the local maximum of the plasmon amplitude (Figs. 7a,b). 

Therefore, up to ~ 2 times enhancement of the local field can be achieved in the 

considered wedge structures. For the experimental observation of this enhancement, the 

wedge should be cut to form a trapezium (Fig. 8). The distances from the tip, at which the 

wedge should be cut, must correspond to the distances from the tip, at which the local 

minimum and maximum of the plasmon amplitude are achieved (Fig. 7). Therefore, the 

height of the trapezium hw (Fig. 8) should be equal to the distance between the local 

minimum and maximum of the corresponding dependence in Fig. 7.  

For example, for curve 1 in Fig. 7b, the local minimum of the plasmon amplitude 

is achieved at y ≈ 2 µm, whereas the local maximum is obtained at y ≈ 70 nm. Therefore, 

the corresponding height of the trapezium should be hw ≈ 1.930 µm with the width of the 

bases fentry ≈ 140 nm and fexit ≈ 5 nm (Fig. 8). In this case, if the coupled film plasmon is 



generated in the trapezium-like wedge, e.g., by means of the end-fire excitation (as shown 

in Fig. 8), then the maximal possible local field enhancement will be achieved at the exit 

base of the wedge of ~ 1.8 times for the material and structural parameters corresponding 

to curve 1 in Fig. 7b.  

Note again that the considered analysis is valid only in the case of relatively weak 

dissipation of the anti-symmetric film plasmons, i.e., when Q2 << Q1. It can be shown that 

the typical ratio of Q2/Q1 for all the presented curves is below ~ 0.07, which suggests that 

the condition of weak dissipation is satisfied.  

 

5. Wedge plasmons 

It has been predicted theoretically (via finite-difference time-domain (FDTD) 

algorithm) and verified experimentally that a special type of strongly localized plasmon 

(wedge plasmon) can exist and be guided by a triangular metal wedge [26]. That is, the 

wedge acts as a new type of sub-wavelength waveguide [26]. This occurs if the wedge 

angle is smaller than the critical angle γc1 (which in the case of the silver-vacuum 

structure and λvac = 0.6328 µm is γc1 ≈ 102o [26]). Wedge plasmons are strongly localized 

near the tip of the wedge and propagate infinite distance along this wedge, if there is no 

dissipation in the metal. Therefore they are structural eigenmodes of the metal wedge 

[26].  

It has also been shown that V-grooves on a metal surface can also guide strongly 

localized plasmons that were called channel plasmon-polaritons (CPPs) [20, 35-40]. The 

analysis of CPP modes has mainly been conducted using the FDTD approaches [36-38]. 

In particular, it was shown that such modes can exist in a V-groove only if the groove 



angle is smaller than the upper critical angle (similar to γc1 for wedge plasmons [26]). 

Recently, GOA-based analysis has also demonstrated that in addition to the upper critical 

angle there also exists a lower critical angle of the groove, below which CPP modes 

cannot exist [20]. This is because below the lower critical angle, GOA is applicable to the 

plasmons in the groove (tapered gap), and these plasmons experience adiabatic nano-

focusing. As a result, localization of CPP modes near the tip of the groove appears to be 

infinite, i.e., such modes do not exist [20]. Therefore, CPP modes can exist in V-grooves 

only within the range of groove angles between the upper and lower critical angles [20].  

The demonstrated analogy between adiabatic nano-focusing of symmetric gap 

plasmons (forming CPP modes [20]) and anti-symmetric film plasmons suggests that we 

should probably be able to use GOA to derive additional existence conditions for strongly 

localized wedge plasmons.  

Similar to [20], in order to find these conditions, we represent a wedge plasmon 

mode in a sufficiently sharp triangular metal wedge by means of an anti-symmetric film 

plasmon propagating in the metal wedge/film with slowly varying thickness. If condition 

(5) is satisfied, GOA is applicable for the analysis of such anti-symmetric film plasmon. 

The effective dielectric permittivity experienced by this film plasmon as it propagates in 

the wedge is defined as εeff = [Q1(y)c/ω]1/2. It increases with decreasing distance to the tip 

of the wedge, due to increasing Q1 (see Eq. (7) and Fig. 2a). Thus the wedge forms a kind 

of a waveguide for the anti-symmetric film plasmon with gradually changing permittivity 

εeff. A localized wedge plasmon mode could then be represented by an anti-symmetric 

film plasmon successively reflecting from the tip of the wedge and the turning point 

(simple caustic) – Fig. 9. The wave vector of the localized wedge plasmon mode is equal 

to the x-component of the wave vector of the anti-symmetric film plasmon qwp = Q1x.  



Note that the main difference between this situation and the previously considered 

nano-focusing of the anti-symmetric film plasmon is that in the case of a wedge plasmon 

mode no incident film plasmon exists. The film plasmon representing the wedge plasmon 

mode is confined to a region close to the tip of the wedge and cannot leave this region, 

which makes wedge plasmon modes non-radiative structural eigenmodes [26]. This 

representation is very similar to the representation of a guided non-radiative mode of a 

dielectric slab by means of a bulk wave successively reflecting from the slab interfaces.  

Only anti-symmetric film plasmons can be used for the representation of wedge 

plasmon modes. This is because the effective permittivity for the symmetric film plasmon 

(as well as its wave vector) decreases with decreasing distance from the tip of the wedge 

(Fig. 2b). As a result, no guiding effect near the tip can be achieved in this case.  

The turning point yt (simple caustic) is then determined by the condition 

wpyy
qyQ

t
==)(1 . In this case, the anti-symmetric film plasmon representing the wedge 

plasmon mode propagates parallel to the tip (Fig. 9).  

However, using GOA for the determination of wave numbers of the wedge 

plasmons modes is not possible, similar to CPP modes in V-grooves [20]. This is because 

the Bohr-Sommerfeld quantization condition [20, 41, 42] that should determine the wave 

numbers of the wedge plasmon modes diverges at the tip of the wedge (as it did at the tip 

of the V-groove for symmetric gap plasmons [20]).  

 Physically, this is related to the fact that if GOA is applicable near the tip of the 

wedge (see conditions (5), (8) and (9)), then the anti-symmetric film plasmon propagating 

towards the tip at any possible angle θ will travel an infinite optical path until it reaches 

the tip. As indicated above, such plasmons cannot be reflected back from the tip even if 



dissipation is ignored. The plasmon asymptotically stops at the tip and will thus have 

infinite localization. Therefore, the localization of the corresponding wedge plasmon 

mode near the tip of the wedge will also be infinite, qwp = + ∞, and this corresponds to 

zero wavelength and velocity. In other words, the wedge plasmon mode does not exist. 

 Therefore, wedge plasmon modes do not exist in a wedge if GOA is applicable. 

On the contrary, if GOA is not applicable near the tip of the triangular metal wedge, then 

the divergence of the Bohr-Sommerfeld quantization condition does not have a physical 

meaning [20]. The anti-symmetric film plasmon representing a wedge plasmon mode is 

efficiently reflected as it propagates towards the tip of the wedge, and this is what is 

required for the representation of the wedge plasmon by the reflecting anti-symmetric film 

plasmon (Fig. 9).  

Despite the fact impossibility of using GOA for the determination of wave 

numbers of wedge plasmon modes, the above consideration leads to important 

conclusions about the existence conditions of wedge plasmons. These plasmons can only 

exist if GOA is not applicable near the tip of the groove – this is where significant 

reflections of the film plasmon may occur. Thus, according to the applicability condition 

of GOA near the tip (Eqs. (8) and (9)), we can write the existence condition for wedge 

plasmon modes in a triangular metal wedge as follows:  

γ ≳ γc2.          (17) 

This condition is thus opposite to inequality (9). It determines the lower critical 

angle γc2 below which wedge plasmon modes do not exist in a triangular metal wedge. 

Thus, wedge plasmons exist only within the range of angles:  



γc2 ≲ γ < γc1,          (18) 

where γc1 was determined numerically in [26] as the upper critical angle above which 

wedge plasmons do not exist because they become coupled to surface plasmons on the 

sides of the wedge [26]. Now it is clear why we used the index “2” for the critical angle 

γc2 (see also Eq. (9)). There are two critical angles determining the existence condition of 

wedge plasmon modes in a triangular metal wedge. For example, for a silver wedge in 

vacuum at the vacuum wavelength λvac = 0.6328 µm, we have γc1 ≈ 102o [26], and γc2 ≈ 7o 

(see above).  

6. Conclusions 

 Using the geometrical optics approximation and the approximation of continuous 

electrodynamics, a possibility of effective nano-focusing of anti-symmetric film plasmons 

in sharp triangular metal wedges has been demonstrated. In particular, it was shown that 

under the mentioned approximations, these plasmons asymptotically stop at the tip of the 

wedge with both their phase and group velocities tending to zero, and the wave vector to 

infinity. As a result, an anti-symmetric film plasmon incident onto the tip of the wedge at 

an arbitrary angle does not experience reflection from the tip, but rather propagates an 

infinite optical path towards the tip, and eventually dissipates in the metal.  

The considered adiabatic regime of nano-focusing of plasmons in a metal wedge 

may occur only if the wedge angle is smaller than the critical angle that is determined by 

the dielectric permittivities of the metal wedge and the surrounding dielectric medium. 

Noticeable local field enhancement (~ 2 times) has been predicted near the tip of the 

wedge, though this enhancement is about 5 times weaker for the metal wedge than for the 

metallic V-groove [20]. The effect of dissipation on plasmon nano-focusing by means of a 



metallic V-groove was analyzed in detail. In particular, optimisation of the geometrical 

and material parameters of the wedge structure for achieving maximal possible local field 

enhancement was carried out. The effect of angle of incidence and wavelength of the 

electromagnetic radiation on nano-focusing and local field enhancement in metal wedges 

was investigated theoretically. Applicability conditions for the obtained results and the 

adiabatic approximation were discussed. 

It was demonstrated that it is not possible to use GOA for the determination of 

wave numbers of the strongly localized wedge plasmon modes guided by a triangular 

metal wedge, because of the divergence of the Bohr-Sommerfeld quantization condition 

near the tip of the wedge. However, the conducted analysis based on GOA has led to the 

determination of the lower critical angle of the wedge, below which wedge plasmon 

modes do not exist. Is was shown that wedge plasmon modes can only exist in the range 

of wedge angles between the lower critical angle (~ 7o for a silver wedge in vacuum) and 

the previously determined upper critical angle (≈ 102o for silver wedge in vacuum [26]). 

Thus the conditions for adiabatic nano-focusing in sharp metal wedges are opposite to the 

conditions of existence of strongly localized wedge plasmon modes [26].  

If conditions for GOA are not satisfied, then the theory developed in this paper 

fails and numerical methods of analysis (e.g., based on the FDTD algorithm) will be 

required. These numerical methods and the analysis of non-adiabatic nano-focusing of 

plasmons in tapered gaps and wedges have been developed in [34]. In particular, it has 

been shown that in the non-adiabatic regime of nano-focusing reflective energy losses in 

the plasmon as it propagates towards the tip may be noticeable and should be taken into 

account. These losses are added to the dissipative losses, resulting in a reduction of the 

local field enhancement near the tip [34].  



The obtained results may be important for efficient energy coupling into nano-

optical circuits, development of new optical sensors and measurement techniques, near-

field microscopy and spectroscopy, design of new sub-wavelength plasmonic waveguides 

and interconnectors, etc.  
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Figure and Table Captions 

Fig. 1. (a) An infinite triangular metal wedge with the angle γ and the permittivity ε2, surrounded 

by a dielectric with the permittivity ε1. (b) A ray representing the direction of propagation of an 

anti-symmetric film plasmon in the wedge in the geometrical optics approximation. θ0 is the angle 

of propagation of the film plasmon at large distances from the tip of the wedge, where the 

coupling between the two surface plasmons representing the film plasmon is negligible. 

Fig. 2. The dependencies of the real part of the wave number Q1 of the anti-symmetric (a) and 

symmetric (b) film plasmon on wedge thickness f for the following material parameters: (1) e1 = – 

6.5, ε1 = 1, vacuum wavelength λvac = 0.4592 µm, (2) e1 = – 16, ε1 = 1, λvac = 0.6328 µm, (3) e1 = 

– 58.8, ε1 = 2.5, λvac = 1.127 µm, (4) e1 = – 58.8, ε1 = 1, λvac = 1.127 µm. The real parts of the 

metal permittivities correspond to silver at the indicated wavelengths [30,31]. 

Fig. 3. The dependencies of the real part of the wave number Q1 of the symmetric (a) and anti-

symmetric (b) gap plasmon on gap width for the same material parameters as in Fig. 2: (1) e1 = – 

6.5, ε1 = 1, vacuum wavelength λvac = 0.4592 µm, (2) e1 = – 16, ε1 = 1, λvac = 0.6328 µm, (3) e1 = 

– 58.8, ε1 = 2.5, λvac = 1.127 µm, (4) e1 = – 58.8, ε1 = 1, λvac = 1.127 µm. For this figure, ε1 is the 

permittivity of the dielectric inside the gap, and e1 is the real part of the permittivity of silver 

surrounding the gap (Fig. 3a is reproduced from Fig. 2a in [20]). 

Fig. 4. The typical dependencies of the term in the left-hand side of inequality (5) for the anti-

symmetric film plasmon (a), symmetric film plasmon (b), and anti-symmetric gap plasmon on 

distance from the tip (c). The angle of the wedge/gap is 2o. (1) e1 = – 96.6, ε1 = 2.5, λvac = 1.631 

µm, (2) e1 = – 58.8, ε1 = 2.5, λvac = 1.127 µm, (3) e1 = – 16, ε1 = 1, λvac = 0.6328 µm, (4) e1 = – 

58.8, ε1 = 5, λvac = 1.127 µm, (5) e1 = – 16, ε1 = 2.5, λvac = 0.6328 µm. Curve 3 in (a) also 

approximately corresponds to the other structure with e1 = – 58.8, ε1 = 2.5, λvac = 1.127 µm, and β 

= 1o. The real parts of the metal permittivities correspond to silver at the indicated wavelengths 

[30,31].  

Fig. 5. Examples of plasmon rays for the anti-symmetric film plasmon in a triangular wedge (a), 

and symmetric gap plasmon in a V-groove (b). In both the cases, the metal is silver and dielectric 

is vacuum with ε1 = 1 and e1 = – 16 [30,31] at the vacuum wavelength λvac = 0.6328 µm; the 

wedge/groove angles are: (1) 1o, and (2) 2o. Dashed curves: θ0 = 75o, solid curves: θ0 = 45o, and 

dotted curves: θ0 = 25o. The initial y-coordinates for all the rays correspond to the ≈ 118 nm 

thickness/width of the wedge/groove.  



Fig. 6. a) Normalized amplitudes of the magnetic field in the metal H20(y)/H200 (H200 ≡ H20(∞)) 

versus y for the anti-symmetric film plasmons incident onto the tip of the metal wedge with the 

angle γ = 2o. There is no dissipation in the metal (e2 = 0), the angle of incidence θ0 = 0, and the 

permittivities and the wavelengths are as follows: (1) e1 = – 58.8, ε1 = 2.5, λvac = 1.127 µm, (2) e1 

= – 16, ε1 = 1, λvac = 0.6328 µm, (3) e1 = – 58.8, ε1 = 5, λvac = 1.127 µm, (4) e1 = – 16, ε1 = 2.5, 

λvac = 0.6328 µm. b) The dependencies H20(y)/H200 for the anti-symmetric film plasmons at e1 = – 

16, ε1 = 1, λvac = 0.6328 µm, and different values of θ0 and γ: (1), θ0 = 0, γ = 4o, (2) θ0 = 45o, γ = 

1o, (3) θ0 = 45o, γ = 4o, (4) θ0 = 75o, γ = 4o. The metal permittivities correspond to the real parts of 

the permittivities of silver at the indicated wavelengths [30,31]. 

Fig. 7. The typical y-dependencies of the normalized amplitudes of the magnetic field 

H20(y)/H20min in the anti-symmetric film plasmon (H20min is the amplitude of the plasmon at the 

local minimum of the amplitude) incident onto the tip of the wedge in the presence of dissipation. 

(a) θ0 = 0, β = 2o, and the other parameters are as follows: 1) λvac = 1.127 µm, ε2 = – 58.8 + i (does 

not correspond to a particular metal), ε1 = 2.5; 2) λvac = 1.127 µm, ε2 = – 58.8 + 3.85i (silver), ε1 = 

2.5; 3) λvac = 0.6328 µm, ε2 = – 16 + 0.52i (silver), ε1 = 1;  4) λvac = 0.6328 µm, ε2 = – 16 + i 

(silver), ε1 = 1; 5) λvac = 0.6328 µm, ε2 = – 16 + i (silver), ε1 = 2.5. (b) ε2 = – 16 + 0.52i, ε1 = 1, 

λvac = 0.6328 µm, and the angles: 1) θ0 = 0, γ = 4o, 2) θ0 = 0, γ = 2o, 3) θ0 = 45o, γ = 4o, 4) θ0 = 45o, 

γ = 2o, 5) θ0 = 0, γ = 1o[30,31]. 

Fig. 8. The trapezium wedge of the optimal height hw for maximal local field enhancement at the 

exit base of the trapezium. The anti-symmetric film plasmon is generated in the trapezium wedge 

by means of the end-fire excitation by an incident bulk wave focused onto the entry (larger) base 

of the trapezium of width fexit. The maximal local field enhancement is thus achieved at the exit 

(smaller) base of the trapezium of width fentry.  

Fig. 9. Geometrical optics representation of a wedge plasmon mode in a triangular metal wedge 

with the tip at y = 0 (Fig. 1b). The anti-symmetric film plasmon with the wave vector Q1(y), 

representing the wedge plasmon mode, is successively reflected from the tip of the groove and the 

turning point (caustic); the wave vector of the wedge plasmon mode qwp = Q1x.  
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