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ABSTRACT

This paper demonstrates the possibility of effiti@diabatic nano-focusing of
plasmons by a sharp triangular metal wedge. Ge@raktiptics approach and the
approximation of continuous electrodynamics araldsethe analysis. In particular, it is
demonstrated that both the phase and group vesafian incident anti-symmetric (with
respect to the magnetic field) plasmon tend to aetbe tip of the wedge, and the
plasmon adiabatically slows down, eventually digBig in the metal. Typically, the
amplitude of the plasmon significantly increasearribe wedge tip, but this increase is
finite even in the absence of dissipation in théaindhe dependence of the local field
enhancement near the tip on structural parametsgpation in the metal, angle of
incidence, etc. is analyzed in this paper. It sahown that an anti-symmetric film
plasmon can effectively be guided by a triangulatahwedge, forming a wedge plasmon
mode that is localized near the tip of the wedge@mopagates along this tip. A new

existence condition for these localized wedge ptassns derived and discussed.

PACS codes: 78.67.—n; 68.37.Uv; 73.20.Mf



1. Introduction

Nano-focusing of light is localization of electrogmeetic energy in regions with
dimensions that are significantly smaller than weaselength. This is one of the central
problems of modern near-field optical microscopwgtthakes the resolution of optical
imaging beyond the diffraction limit of light [1-141t is also important for the
development of new optical sensors and delivergtaingly localized photons to tested
molecules/atoms (e.g., for local spectroscopic oremsents [13-19]). Nano-focusing is
also one of the major tools for efficient couplmigight and light-carried information into

sub-wavelength waveguides, interconnectors and-onptical devices [20].

One of the most common approaches to nano-focusihght is based on the use
of strongly localized surface plasmons in metatiano-structures, such as sharp metal
tips [7,10,14], dielectric conical tips covered hwvimetal film [4,11-13], conical and
pyramidal tips covered in metal film with nano-apee [9,12,21-24], etc. These are the
structures commonly used in scanning near-fieldcapmicroscopy. In addition, nano-
focusing of plasmons in metallic nano-structuresussially accompanied by strong
enhancement of local electromagnetic field, esplgciaear sharp metallic tips and
dielectric tips covered with metal [4,7,10,13,1%his provides an interesting opportunity
to develop new optical sensors based on the |adlénhancement. For example, several
papers have reported Raman spectroscopy from meteoear a sharp metal tip with
nano-focusing [14-18]. Thus, strong enhancemenh®flocal field that can be achieved
during nano-focusing [7,10,14,20] may be used fmssjble development of new SERS
sensors capable of single molecule detection withvgavelength resolution (if used in

combination with a scanning near-field optical ragmope).



Nano-focusing of plasmons by means of nano-tigméogous to a spherical lens,
because in both these cases the electromagnetigyeise€ocused into a region localized
in two dimensions (like a circular spot). However,the case of a spherical lens, this
region cannot be smaller than half-the-wavelengdtih@ focused radiation (the diffraction
limit of light), while for a metallic nano-tip, theegion of localization may be arbitrarily
small (in the approximation of the continuous eledynamics and absence of dissipation
in the metal) [7,10,14]. Similarly, nano-focusinfyjptasmons by metallic wedges and V-
grooves [20,25] should be analogous to a convealtioglindrical lens, because these
structures focus the light into regions that aalized only in one direction (like a thin
strip). The minimal width of this strip for a comt@nal cylindrical lens is limited by
half-the-wavelength in the medium, while for nawootising by a metallic groove this
strip can be arbitrarily narrow (in the approximoatiof the continuous electrodynamics)

[20].

Theoretical analysis of nano-focusing of plasmorns & sharp groove was
conducted in the geometrical optics approximati®®4Q) [20] and using the approximate
solution in the cylindrical coordinates [25]. Thaeatysis conducted in [25] is also directly
applicable for the investigation of nano-focusing dharp metal wedges. However, the
applicability of this method is highly restrictivep that the developed approximate theory
is valid only in the close proximity (typically, thin a few tens of nanometers) of the tip
of the wedge/groove [25]. The applicability conaiits for the GOA approach are much
less restrictive, and it is usually applicable farmuch broader range of structural
parameters [20]. However, the conducted analysisdan GOA [20] was limited only to
nano-focusing in metallic grooves. No detailed Btigation of plasmon propagation and

nano-focusing in sharp metallic wedges has beedumted so-far.



Therefore, the aim of this paper is to developesath of nano-focusing of strongly
localized plasmons by a sharp metal wedge in themggical optics (adiabatic)
approximation. In particular, it will be demonsadt that only plasmons with anti-
symmetric distribution of the magnetic field acrabe wedge will experience nano-
focusing with their phase and group velocities gsytically tending to zero as the
plasmon approaches the tip of the wedge. The effiedissipation in the metal will be
investigated in detail, and the optimization ofustural parameters will be described.
Some important applicability conditions for stropgbcalized wedge plasmons [26]
guided by the tip of a wedge will also be deterrdiaed discussed. Comparison with the

plasmons in sharp V-grooves will be carried out.
2. Geometrical Optics Approximation

Consider an infinite metal wedge with the anglnd complex permittivitg, = e
+ie (61 < 0,& > 0), surrounded by a dielectric medium with raadl positive dielectric
permittivity €1, such that e;| > €, (the existence condition for surface and film piass
[27,28]). The angle of the wedge is assumed to ufécently small (the specific
conditions restricting the wedge angle are presehtdow). The coordinate axes are as

indicated in the figure.

Consider two surface plasmons of the same frequendiie opposite sides of the
wedge, both propagating towards the tip of the weaigthe same angle of inciderte
with respect to the-axis. At a large distance from the tip of the wedghere these
plasmons can be regarded uncoupled, the angleciofeimce is equal t8y (Fig. 1b). As
the two plasmons travel towards the tip of the veedipe thickness of the wedge

decreases, and the plasmons couple across the wHugevedge is effectively a metal



film (membrane) with varying thickness. Therefotlee coupled plasmons form a film

plasmon.

There are two types of film plasmon — with the sysme and anti-symmetric
distributions of the magnetic field with respect toe middle plane of the film
(membrane). We will refer to these plasmons as symmand anti-symmetric film
plasmons, respectively. This is similar to the teotogy used in [20] for the symmetric
and anti-symmetric gap plasmons. The dispersioatiogiships for the symmetric and

anti-symmetric film plasmons, respectively, areegi\oy the equations [28]:

tan){azfj=—a182, (1)
2 oYY
tan){azfj:—azgl, @
2 045
where,

alzqu‘kg?—l’ azzqu_kgsz (3)

are the reciprocal penetration depths of the plasnmbo the dielectric and metal,
respectivelyg = Q; +1Q; is the complex wave number of the plasm@a determines
dissipation of the plasmony = w/c is the wave number in vacuum, and the thickness

of the film (membrane):
f =2ytan(y/2), (4)

Note that Egs. (1) and (2) are also valid for thesadiption of the coupled
plasmons in a dielectric gap (with the permittivitybetween two identical metals with

the permittivitiese,) [28]. However, in that case, Eq. (1) gives thgpdision of the anti-



symmetric gap plasmon, whereas Eq. (2) determimzslispersion of the symmetric gap

plasmon [20].

In this paper, we assume that dissipation of thsmbns is weak, i.e << |e|
and Q; << Q. The opposite case is not interesting, becaudessipation is strong, the
plasmon will not be able to propagate noticeabdtadices in the structure and experience

effective nano-focusing.

As the anti-symmetric or symmetric film plasmoropagates towards the tip of
the wedge, it experiences changing thickness ofwkeége (film). This means that the
effective dielectric permittivity of the structum; = (g/ko)* also changes, because the
wave number of the plasman depends on changing thickness of the wedge (film).
Propagation of the film plasmon can be consideradthe geometrical optics
approximation (GOA) (or, using the terminology afamtum mechanics, in the WKB
approximation), if variations of the wave vectortlbé plasmon are small within distances

of the order of one wavelength in the structur(729]:
|d(Quy )yl << 1, 5)

whereQy is they-component of the real part of the wave vedt@f the plasmon in the
structure (Fig. 1b). In this case, the wedge isialt a metal film with slowly changing
thickness. Therefore, at all points where condi{idnis satisfied, the parameters of the
film plasmon (including its dispersion, dissipatioand field structure) can be
approximately determined by considering this plasamoa uniform film of thickness that
is equal to the local thickness of the wedge at ¢basidered point. In this case,

propagation of the plasmon in the wedge can beesgmted by a plasmon ray, i.e., a



curve such that the wave vector of the film plasnsoparallel to the curve at every point.

An example of such a ray for the anti-symmetrimfplasmon is shown in Fig. 1b.

For weak dissipation, numerical solution of thepdirsion relationships (1), (2)
gives real part€); of the plasmon wave numbers as functions of Ititiakness of the
triangular silver wedge for anti-symmetric (Fig.)2and symmetric (Fig. 2b) film
plasmons. The dependencies in Figs. 2a,b are peestor different permittivities of the
surrounding dielectric and different wavelengthsuteng in different real parts of the

metal permittivities.

In particular, it can be seen that the wave numbérthe anti-symmetric film
plasmons tend to infinity with decreasing thicknetshe wedge (film) to zero, i.e., with
decreasing distance to the tip of the wedge. Onctiwgrary, the wave numbers of the
symmetric plasmons are relatively unaffected byresing thickness of the wedge (Fig.
2b). In fact, the wave numbers of the symmetrisiplans reduce to the wave numbers of
the bulk waves in the surrounding dielectric, aslgeethickness tends to zero near the tip.
Thus the variation of the wave number of a symmdiim plasmon may only occur
between the wave number of the plasmon on an &blaketal-dielectric interface and the
wave number of the bulk wave in the surroundindedigic (Fig. 2b). This is also the
reason for decreasing the effect of wedge thickmassthe wave numbers of the
symmetric plasmons, when the rati@|/¢; is increased. In this case, the wave number of
the surface plasmon on the isolated metal-dieteatterface becomes closer to the wave
number of the bulk wave in the surrounding dieiectresulting in decreasing range of

possible wave numbers of the symmetric film plasrfummpare curves 1 — 4 in Fig. 2b).

For comparison, wave numbers of the symmetric ant-sgmmetric gap

plasmons propagating in a sufficiently sharp V-gem silver are shown as functions of



local groove width in Figs. 3a,b for the same matgrarameters as in Figs. 2a,b (Fig. 3a
is reproduced from [20]). In particular, it can §een that the dependencies of the wave
numbers of anti-symmetric plasmons in sharp metalges are very similar to those for
the symmetric gap plasmons in sharp V-grooves (eoepigs. 2a and 3a). This suggests
significant similarities in nano-focusing of thepédasmons by wedges and grooves.
Indeed, both these figures demonstrate that antirsstric plasmons in sharp triangular
wedges and symmetric plasmons in V-grooves (see [@8]) experience adiabatic
stopping near the tip. This will occur for all aeglof incidenc®, < W2 (Fig. 1b). As the
anti-symmetric film plasmon propagates towardsttpeof the wedge, thg-component
Quy of the real parQ of its wave vector increases to infinity, while the-component
remains constant (due to Snell's law and uniformityhe wedge along theaxis — Fig.
la). Therefore, irrespective of the initial inciderangled, (as long a®, < 172), the wave
vector of the anti-symmetric wedge plasmon neartifhes perpendicular to the-axis,
which makes the plasmon ray turn perpendiculahéotip of the wedge (Fig. 1b). Note
however, that these conclusions are correct orhyeifapplicability condition (5) for GOA
is satisfied for all values of In this case, no reflection occurs from the fighe wedge;
the plasmon propagating towards the tip adiabdficslows down, and eventually
dissipates in the metal. This occurs in a verylsiniashion as for symmetric plasmons in

sufficiently sharp V-grooves [20].

Near the tip, the local thickness of the wedge setadzero. In this case, if the

condition

fRe(,) << 1, (6)

then Eq. (2) (for the anti-symmetric film plasmamnes:



Q1= — Z4/(&f). (7)

Substituting Eq. (7) back into condition (6), ilnche seen that &t— 0 (i.e., near
the tip of the wedge), condition (6) can be saisfnly ifei/|er| << 1, which is usually
the case for good metals. This is also the appglibaltondition for the asymptotic
behavior of the wave number of the anti-symmeit plasmon (Eq. (7)) near the tip of

the wedge.

On the contrary, the dependencies of the wave nisnilethe symmetric film
plasmons and anti-symmetric gap plasmons (Figsarith 3b) are quite different. As
indicated above, near the tip of the wedge (i.dienef — 0) the wave number of the
symmetric film plasmon tends to the wave numbethef bulk wave in the surrounding
dielectric (Fig. 2b). In this case, the penetrati@pth of the symmetric film plasmon into
the surrounding dielectric tends to infinity, ane tfilm plasmon turns into a non-
localized bulk wave in the dielectric. Thereforgmsnetric film plasmons cannot be used

for nano-focusing in sharp wedges.

The wave number of the anti-symmetric gap plasmexoines zero at the cut-off
gap width (Fig. 3b), below which the gap plasmoesloot exist as a propagating wave.
This plasmon can still be localized beyond therddfion limit with the region of
localization limited by the cut-off gap width. Fekample, this cut-off width for curve 1
in Fig. 3b is ~ 200 nm. However, anti-symmetric galpsmons cannot experience
unlimited (in the absence of dissipation) adiabat@o-focusing like symmetric gap

plasmons and anti-symmetric film plasmons.

The above analysis is valid if the applicabilityndd@ion for GOA (Eq. (5)) is

satisfied. Fig. 4 presents the typical dependerafiéise applicability term in the left-hand



side of Eqg. (5) on thg-coordinate (distance from the tip) for the antisyetric film

plasmon (Fig. 4a), symmetric film plasmon (Fig. ,48hd anti-symmetric gap plasmon
(Fig. 4c). The structural and material parameteesas indicated in the figure caption.
The similar dependencies for the symmetric gapnpiasare presented in [20]. GOA is
only applicable when the presented curves in FHgsc are noticeably below 1. For
example, for the structures corresponding to cu/es5 in Fig. 4a (i.e. for the anti-
symmetric film plasmon), GOA is applicable at alétdnces from the tip of the wedge,

because these curves are noticeably below 1 aakiés ofy. However, for the wedges

corresponding to curves 1-2, GOA is only applicdbledistances above the typ= 0.2

pum. This is again similar to symmetric gap plasmiargharp V-grooves [20].

GOA is very well applicable for the analysis of syetric film plasmons in the
considered sharp wedges at all distances fromiphevhich follows from Fig. 4b. Near
the tip, the wave numbers of these plasmons tenketovave numbers of bulk waves in
the surrounding dielectric (Fig. 2b). Thereforesmatall distances from the tip, variations
of these wave numbers within distances of the omlerone wavelength become
negligible, and the applicability term tends toaéFig. 4b). However, it is important to
note that these symmetric film plasmons are useless the view-point of nano-

focusing, as they are very weakly localized neatrtifh of the wedge.

On the contrary, for the anti-symmetric gap plasnmora sharp V-groove, the
applicability term turns to infinity at the cut-othickness of the gap. This is also
expected, because at this thickness the wave nuofilibe anti-symmetric gap plasmon
turns to zero (see Fig. 3b and its discussion). déreesponding wavelength becomes

infinite, and even for arbitrarily sharp groovesiaton of the structural parameters (e.g.,



width of the groove) within one wavelength beconmdmitely large, resulting in the

applicability term in the left-hand side of Eq. @$0 turning to infinity (Fig. 4c).

Note also that, as follows from Figs. 4a-c, dedrepmagnitude of the real part of
the metal permittivity and increasing permittivif the dielectric in contact result in
improving applicability of GOA for anti-symmetridlrh plasmons (Fig. 4a), symmetric
and anti-symmetric gap plasmons (see Fig. 4c ad), [But has the opposite effect for the
symmetric film plasmons (Fig. 4b). This is becaube symmetric film plasmons
experience larger range of variations of their waumbers, ifle;| is decreased ard is
increased (see above). This results in larger trans of the wave parameters within one
wavelength in the structure, leading to worsenihthe GOA applicability. On the other
hand, for example, for anti-symmetric film plasmonsducing|e;| and increasing:
results in decreasing penetration depth of thenpdars into the metal wedge. This leads to
decreasing coupling between the plasmons acrossvéldge, and thus decreasing the
effect of changing wedge thickness. Therefore,apglicability conditions for GOA are
easier to satisfy. It is also obvious that decrepsvedge (gap) angle also result in

improving applicability of GOA for all structures.

Furthermore, for all the types of coupled plasmonsvedges/grooves, GOA is
always applicable at relatively large distancesnfrthe tip (large values of). This is
because the surface plasmons forming the coupladofi gap plasmons are not strongly
coupled across the wedge/gap of sufficiently lafgekness/width. Therefore, variations
of this thickness/width does not have a significafiect on the plasmons, resulting in
good applicability of GOA. Thus, applicability of @A is generally improved at
sufficiently large distances from the tip — Figa-@(see also [20]). This is a significantly

distinguishing feature between GOA and the pre\nodsveloped approximate method



of analysis of plasmons in sharp wedges/grooved,ishnormally applicable only in the

immediate proximity of the tip [25].

As discussed above, near the tip of the wedge,wihee vector of the anti-
symmetric plasmon is always perpendicular to tipe(Eig. 1b). This is becaus®,y
becomes very large (see Eq. (7)) wHen O, i.e. near the tip. In this cas@y = Q1.

Using this relationship together with Eqgs. (4) &Ayg condition (5) can be reduced as

d -1
‘ (Ely)‘:_yel <l @)
y ‘ 2¢,
or
Y <<V =— Zi/ey, 9)

wherey,; is the critical angle of the wedge, such that G®Applicable only for wedge
angles that are noticeably smaller thygn(the reason for using the index 2 will be clear
below). For a silver wedge in vacuumigs. = 0.6328um (He-Ne laser), we hawg = —
16.22 [30,31], ang.; = 7°. For example, curve 3 in Fig. 4a is lies signifita below 1, as

this curve corresponds to the silver wedge with?’ < yc,.

Egs. (8) and (9) are again similar to those obthifte symmetric plasmons in
sharp V-grooves [20], as well as the dependenaiésg. 4a (that are similar to the same
applicability curves obtained for symmetric gapspt@ns in [20]). In the same way as for
the symmetric gap plasmons [20], all the curved=ign 4a tend to plateaus at small
distances from the tip. These plateaus are detedry the ratio in the left-hand side of

Eq. (8), which does not depend on local wedge tiask.



If the conditiony <<y, is not satisfied, then the anti-symmetric filmgstaon will
experience significant reflections in the wedgé asopagates towards the tip. Physically,
these reflections will occur at every point on thg where the applicability condition for
GOA is not satisfied. Decreasing real part of thetahpermittivity e, and increasing
permittivity €; of the surrounding dielectric medium result inrgasing critical anglgc,,
and the GOA applicability condition for the antirspetric film plasmon becomes less

restrictive (Fig. 4a).

3. Plasmon Rays

Plasmon rays are determined by the afdletween the plasmon wave-vector and
the y-axis (Figure 1b). The algorithm for the determimatand plotting of plasmon rays
for the anti-symmetric film plasmons is the saméoashe symmetric gap plasmons [20].
It can briefly be outlined as follows: if we knowet position of some point with the
coordinatesx,y) on the ray, then the position of the next poirthwhe coordinatedx(+
dx, y + dy) on the same ray is determined by the afgi¢ the pointX,y) and the value of
dy. Thus, the plasmon ray can be determined if wewkiin@ position of some initial point
through which the plasmon ray propagates (for nadetailed discussion of the algorithm
see [20]). Suppose that this point is chosen orytaris. Then the typical plasmon rays

for different incidence angld¥ and different wedge angles are presented in Rig. 5

For comparison, plasmon rays in the inversed siraci.e., a metal groove rather
than a wedge, are presented in Fig. 5b for the stmergap plasmons [20]. The angles of
the silver wedge in vacuum (Fig. 5a), and vacuuooge in a silver substrate (Fig. 5b)
are the same for the corresponding sets of cuAesan be seen, the rays of the anti-
symmetric film plasmon in a wedge and symmetric gd@smon in a groove are

orthogonal to the-axis aty = 0. However, in the wedge, the plasmon rays stabend



when they come significantly closer to the tip thiangrooves, and thus the anti-
symmetric film plasmon reaches the tip of the wedge larger value ox than the
corresponding symmetric gap plasmon (compare Figsb). This is because film
plasmons are formed by surface plasmons couplesdsathe metal wedge, while the gap
plasmons are formed by surface plasmons couplesssdhe vacuum gap. Plasmon
penetration depth into the metal is smaller thamacuum, which means that coupling in
the film plasmon weakens faster with increasingkthéss of the wedge than coupling in
the gap plasmon with increasing width of the gap.aAresult, the wave number in the
anti-symmetric film plasmon decreases faster witlraasing thickness of the wedge, and
coupling across the wedge has a significant effiadihe wave number only in the region

significantly closer to the tip (Fig. 5a) than &ymmetric gap plasmons (Fig. 5b).

4. Nano-focusing of plasmons

As the anti-symmetric film plasmon approaches tig daf the wedge, it
adiabatically slows down, i.e., its phase and greelpcities turn to zero (similar to the
symmetric gap plasmon in a metallic gap [20]). Thmeans that the anti-symmetric
plasmon experiences infinite (in the approximatdrrontinuous electrodynamics) nano-

focusing as it propagates towards the tip of thdgee

The amplitude of the anti-symmetric film plasmonitgsropagates towards the tip
of the wedge is determined by the same procedwaehhs been developed for nano-
focusing of the symmetric plasmon in a sharp V-geof20]. Let us first assume that
dissipation in the metal is zero, i.e;,= e; is real and negative. Because the structure is

uniform along thec-axis (along the tip of the wedge), the energy eoration gives [20]:

Scodp = Scodb, (10)



whereS is the energy flux in the film plasmon at largstdnce from the tip of the wedge
where the anti-symmetric film plasmon is represeg two uncoupled surface plasmons
(Fig. 1b), andS and®© are the energy flux and angle of propagation efgtasmon at an
arbitrary point on the plasmon ray. Note again tRat (10) is valid only in the

assumption of zero dissipation in the metal.

The energy fluxS in the anti-symmetric film plasmon at an arbitramgdge
thicknesd is given by the Poynting vector averaged overmpigod of the wave@w and

integrated over the-coordinate from o to + co:

2 .
S—CQ1|H |2 2 N sinh(@ 5 f) B f

= — — , (1)
16mo €010 @0 ,0Sinh?(a,0f /2) e sinh?(a,of /2)

where Hy is the amplitude of the magnetic field at eithéitree metal interfaces at the

considered distance from the tip, and

010 =4 Qf —K§E1, 00 =yQF —kGe . (12)

Thus, in order to obtain the amplitude of the deait anti-symmetric plasmon as a
function of distance from the tip of the wedge le tabsence of dissipation, we use the
following procedure [20]. Determine (numericall) from Eq. (2) for different values of
f (Fig. 2a), which automatically gives the depend@eatQ; ony — see Eq. (4). Use the

Snell law
Qo1SinBp = Q1SiNd (13)

(whereQq; is the real part of the wave numimgr= Qo + Qo2 of the film plasmon ay —
+ o) to determine the angibetween the wave vector of the anti-symmetricptas and

the y-axis. CalculateS(y) from Eq. (11), and use Eg. (10) to determineaimplitude of



the plasmorHy,(y), assuming that the amplitude of the incidentplas at infinityH,qo =

1 (recall that we consider the structure withossighation).

Fig. 6 shows the typicaj-dependencies of the amplitudelsy(y) of the anti-
symmetric film plasmons at zero dissipation in tmetal € = 0). Similar to the
symmetric gap plasmons in sharp V-grooves [20],amg-symmetric film plasmons also
increase their amplitudes as they propagate towtrdstip of the wedge (Fig. 6).
However, this increase is not as strong as forsgimemetric gap plasmons, and is only

about ~ 1.5 — 2 times, compared to 4 — 12 timeg®isymmetric gap plasmons [20].

The dependencies in Fig. 6 are plotted startingnf8® nm distance from the tip of
the wedge. This is because at this distance theatyfhickness of the wedge becomes ~ 1
nm, and for smaller thicknesses the approximatioooatinuous electrodynamics is not
applicable [32,33]. At the same time, as can be $®en Fig. 6, the maximal amplitudes
of the film plasmons are achieved at distances df06 nm from the tip, where the

developed theory is well applicable.

Increasing the permittivity of the surrounding dmlic results in decreasing
maximal plasmon amplitude (compare curves 2 andnd, curves 1 and 3 in Fig. 6a).
However, increasing the magnitude of the metal péwity results in increasing
efficiency of nano-focusing in terms of the lodald enhancement (curves 1 and 4 in Fig.
6a). This is very similar to what was predicted floe symmetric gap plasmon in a V-
groove [20]. Therefore, to increase local field @mtement near the tip of the wedge, one
should increase the ratio|fe;. However, applicability of GOA worsens with incsaag
ratio |@|/e; (Section 2), and this may eventually lead to matide reflections from the tip

of the wedge (similar to the grooves for which GB8Aot applicable [20,34]).



Increasingd, results in decreasing local field enhancement teatip (Fig. 6b).

This is related to the fact that increasing andlénoidence, results in decreasing
component of the energy flux in the incident plasmdf dissipation is zero, then
according to energy conservation, this flux commrstould remain constant (in GOA)
along the plasmon ray [20]. On the other hand, wen O the plasmon ray becomes
normal to the tip of the wedge (see Figs. 1b, Bagrefore, near the tip, the energy flux in
the plasmon is always perpendicular to the tip, parallel to the/-axis. This means that
decreasing-component of the incident energy flux (i.e., iragi®g6,) causes decreasing
energy flux in the plasmon near the tip, i.e., dasng its amplitude — compare curves 1,

3, 4 in Fig. 6b (see also [20]).

Similar to nano-focusing in V-grooves [20], deciagswedge angle results in
increasing distance from the tip of the wedge, dtictv the maximal local field
enhancement is achieved (compare cures 2 and ig.i6ly). This is because in GOA and
in the absence of dissipation, the plasmon amgitisddetermined by the size of the
localization region where the energy is concentratee to nano-focusing, but not by
distance that the plasmon should travel to reach Idtalization region. On the other
hand, plasmon localization depends on local thisknef the wedge (localization
increases with decreasing local thickness), ands#émee wedge thicknesses are achieved

at larger distances if the anglés decreased.

Another similarity between nano-focusing in V-gresVf20] and sharp triangular
wedges is that in both these cases the local erheamt of the field near the tip is finite,
i.e., all the curves in Fig. 5 tend to plateausnwre, 0. However, the actual values of the
field enhancement, corresponding to the plateaessignificantly smaller for the wedges

compared to the grooves. The plateaus of the plasmplitude in the wedge (Fig. 6) can



be understood by considering Eq. (11¥ at O (which is equivalent tg — 0). In this

case, Eq. (11) is reduced as

C2

N 2
S= SrLE, Hao (14)

which is independent of As a result, the corresponding amplitude of thasmon is also
y-independent — see the plateaus in Fig. 6. Therdiftees in the plateau height for gap
plasmons [20] and film plasmons (Fig. 6) are du¢htofact that Eq. (14) contaimg in

the denominator, as opposed| | for the gap plasmons [20]. Indeed, Eq. (10) suggest
that near the tif&coD, = S (because in this cage= 0) for both the wedge and groove —
see also [20]. For example, for the wedge, subsiguhere Egs. (14) and (11), and
assuming that the initial point is sufficiently fmom the tip, so that there is no coupling
between the plasmons on the wedge sideg £> 1), we obtain the amplitude at the tip

of the wedge:
| Haol 2 = Quea[(e1020) ™t + (2010) ™ | Haool coBy,

whereHyqo is the amplitude of the incident plasmon at.y+ o (i.e., whereaf >> 1).

Similar equation for the groove [20] gives

|Haol? = Qil el [(610(20)_1 + (810(10)'1] | Hao0l “coBp.

From here, it is obvious that the amplitude of #uakabatically focused film plasmon at
the tip of the wedge is é|/e1)"* times smaller than that of the gap plasmon atithef

the V-groove — compare Fig. 6 with Fig. 5 from [20]

It is important that enhancement of the localdfiekar the tip of the wedge/gap is

not the necessary condition for nano-focusing. Nacasing, i.e., localization of the



electromagnetic energy in a region that is muchllemidan the wavelength, may occur if
there is no field enhancement (see, for examplevecd in Fig. 6b). However, the
additional effect of field enhancement may be usefupractical applications such as

design of new optical sensors, near-field opticarascopy and spectroscopy, etc.

As has been shown in [20], dissipation in the mtay play a significant role in
plasmon nano-focusing, especially for the localldfienhancement. For arbitrary
dissipation the metal permittivitss = e; + ie; (e, > 0) and the energy flux in the anti-

symmetric film plasmon at a given film thickndssan be written as:

Re(@/¢,) N Re(@/¢g,) sinh[f Re(@,)] _
Re@,)  Re(@,) Zsinh@,f /2)’

C2 2
S= ST[(,O| H 2o| eXp(_ZXsz)

_Re@/g,) sin[fIm(a,)]
Im(a,) 2sinh@, f /2)f |

(15)

wherex;, is the coordinate in the direction of plasmon pigation. As mentioned in [20],
the amplitude of the plasmath,g cannot be chosen to equal lyat + o, because in this
case it would have been zero at any finite valug dherefore, we choose thdi, = 1 at

some reference point on the plasmon ray, and tkeifsp choice of this point will be

discussed below.

In the case of weak dissipation, i.e., wieerc< |e;| andQ, << Qy, Eq. (2) gives

for the anti-symmetric film plasmon:

~ 038K, (03 & f =050 8, F +20,088,) 12+ 20, °e,€,05
Q fa foelz — fay,0 goaf —2e¢,(a go B C(fo)]

Q, , (16)

where Q is determined numerically using Eq. (2) under tbsuanption thag, = 0.



The numerical procedure developed in [20] for thiewheination of the plasmon
amplitude along a plasmon ray in the presence sHightion can be directly applied for
the analysis of nano-focusing of anti-symmetrienfiplasmons in sharp wedges. The
resultant dependencies of the plasmon amplitudedistance from the tip of the wedge

are presented in Fig. 7 for silver wedges at dffiemwavelengths.

It can be seen that at large distances from theftijhe wedge, the amplitude of
the film plasmon propagating towards the tip desesaexponentially, goes through a
minimum, and then strongly increases reaching airmam. Further decrease of distance
to the tip of the wedge results in a monotonouseadse of the plasmon amplitude (Figs.
7a,b). All the curves in Figs. 7a,b are normaliredhe amplitude of the plasmon at the
mentioned minimum. This means that the referencetpoith the amplitudéH,o = 1 is

always chosen at the minimum of the plasmon ang#irigs. 7a,b).

The exponential decrease of the plasmon amplitudargé distances from the
wedge tip can be explained by weak coupling ofdiasdace plasmons forming the anti-
symmetric film plasmon at large thicknesses ofvtleelge. Because the coupling is weak,
the predominant mechanism of changing plasmon &migliis dissipation in the metal.
When the plasmon comes closer to the tip, so thgblong across the wedge is significant
(due to decreasing thickness of the wedge), thexietif nano-focusing increases (Fig. 6)
and may overpower dissipation. As a result, thesmtan amplitude starts to increase.
However, in the vicinity of the tip, the amplitudeowth caused by nano-focusing ceases
(see the plateaus in Fig. 6). As a result, if geson is sufficiently weak, the plasmon
amplitude reaches a maximum at an optimal disténoce the tip, and then monotonically
decreases to zero whgn- 0 (Fig. 7). If dissipation is increased the amyalg maximum

decreases (Fig. 7), and eventually disappearseadtieg(curve 5 in Fig. 7a).



Similar to the case with no dissipation (Fig. 6)g.F7b demonstrates that
decreasing angle of incidence results in increasiagimal local field enhancement near
the tip of the wedge. The explanation of this isiksinto that presented for Fig. 6 with no
dissipation. Increasing wedge angle also result;@éneasing local field enhancement
(Fig. 7b). This is because increasing wedge anglsesamore rapid variations of the
wedge thickness. Therefore, in order to experiergreficant amplitude enhancement due
to nano-focusing, the plasmon should travel smalistance along thg-axis, which
means smaller effect from dissipation. The distenme the tip, at which the maximum

of the plasmon amplitude is reached, decreasesingtbasing wedge angle.

As discussed in [20], the choice of normalizatiéthe plasmon amplitude, so that
it is equal to 1 at the local minimum (Figs. 7ajb)useful, because it immediately shows
the maximal possible enhancement of the plasmdd fieiring nano-focusing. This
enhancement is then given by the local maximunhefglasmon amplitude (Figs. 7a,b).
Therefore, up to ~ 2 times enhancement of the Ifieddl can be achieved in the
considered wedge structures. For the experimemisgrgation of this enhancement, the
wedge should be cut to form a trapezium (Fig. 8 d@istances from the tip, at which the
wedge should be cut, must correspond to the distafrom the tip, at which the local
minimum and maximum of the plasmon amplitude at@eaed (Fig. 7). Therefore, the
height of the trapeziunh,, (Fig. 8) should be equal to the distance betwé&enlacal

minimum and maximum of the corresponding dependeanEgy. 7.

For example, for curve 1 in Fig. 7b, the local mom of the plasmon amplitude
is achieved ay = 2 um, whereas the local maximum is obtaineg at70 nm. Therefore,
the corresponding height of the trapezium shoult, e 1.930um with the width of the

basedewry = 140 nm andeq: = 5 Nnm (Fig. 8). In this case, if the coupled filtagmon is



generated in the trapezium-like wedge, e.g., bynaed the end-fire excitation (as shown
in Fig. 8), then the maximal possible local fielthancement will be achieved at the exit
base of the wedge of ~ 1.8 times for the matendl €tructural parameters corresponding

to curve 1 in Fig. 7b.

Note again that the considered analysis is valigl onthe case of relatively weak
dissipation of the anti-symmetric film plasmons,,iwhenQ, << Q. It can be shown that
the typical ratio 0fQ./Q; for all the presented curves is below ~ 0.07, Wisiaggests that

the condition of weak dissipation is satisfied.

5. Wedge plasmons

It has been predicted theoretically (via finitefelience time-domain (FDTD)
algorithm) and verified experimentally that a spétype of strongly localized plasmon
(wedge plasmon) can exist and be guided by a wilangnetal wedge [26]. That is, the
wedge acts as a new type of sub-wavelength waved@ié]. This occurs if the wedge
angle is smaller than the critical anglg (which in the case of the silver-vacuum
structure and\,c = 0.6328um isy.; = 102 [26]). Wedge plasmons are strongly localized
near the tip of the wedge and propagate infinistatice along this wedge, if there is no
dissipation in the metal. Therefore they are stmatteigenmodes of the metal wedge

[26].

It has also been shown that V-grooves on a mettdican also guide strongly
localized plasmons that were called channel plaspwdaritons (CPPs) [20, 35-40]. The
analysis of CPP modes has mainly been conducted tls¢ FDTD approaches [36-38].

In particular, it was shown that such modes castemnia V-groove only if the groove



angle is smaller than the upper critical angle {lsinto y.; for wedge plasmons [26]).
Recently, GOA-based analysis has also demonstitaaedh addition to the upper critical
angle there also exists a lower critical anglehefgroove, below which CPP modes
cannot exist [20]. This is because below the lowical angle, GOA is applicable to the
plasmons in the groove (tapered gap), and thesenplas experience adiabatic nano-
focusing. As a result, localization of CPP modeartiiee tip of the groove appears to be
infinite, i.e., such modes do not exist [20]. Theref CPP modes can exist in V-grooves

only within the range of groove angles betweenuiy@er and lower critical angles [20].

The demonstrated analogy between adiabatic nansifagof symmetric gap
plasmons (forming CPP modes [20]) and anti-symmétm plasmons suggests that we
should probably be able to use GOA to derive aoiditi existence conditions for strongly

localized wedge plasmons.

Similar to [20], in order to find these conditiongs represent a wedge plasmon
mode in a sufficiently sharp triangular metal wetlganeans of an anti-symmetric film
plasmon propagating in the metal wedge/film withwdy varying thickness. If condition
(5) is satisfied, GOA is applicable for the anaysi such anti-symmetric film plasmon.
The effective dielectric permittivity experienced thys film plasmon as it propagates in
the wedge is defined as: = [Qu(y)c/w] Y2 It increases with decreasing distance to the tip
of the wedge, due to increasig (see Eq. (7) and Fig. 2a). Thus the wedge formad ki
of a waveguide for the anti-symmetric film plasmwith gradually changing permittivity
et A localized wedge plasmon mode could then beesated by an anti-symmetric
film plasmon successively reflecting from the tiglee wedge and the turning point
(simple caustic) — Fig. 9. The wave vector of trealzed wedge plasmon mode is equal

to thex-component of the wave vector of the anti-symméiine plasmongup = Qux.



Note that the main difference between this situaéiod the previously considered
nano-focusing of the anti-symmetric film plasmonhat in the case of a wedge plasmon
mode no incident film plasmon exists. The film plasmepresenting the wedge plasmon
mode is confined to a region close to the tip efwedge and cannot leave this region,
which makes wedge plasmon modes non-radiativetataleigenmodes [26]. This
representation is very similar to the represemaioa guided non-radiative mode of a

dielectric slab by means of a bulk wave succesginadlecting from the slab interfaces.

Only anti-symmetric film plasmons can be used far tepresentation of wedge
plasmon modes. This is because the effective pévityittor the symmetric film plasmon
(as well as its wave vector) decreases with derrgakstance from the tip of the wedge

(Fig. 2b). As a result, no guiding effect near tipecan be achieved in this case.

The turning poiny; (simple caustic) is then determined by the cooditi

Ql(y)| y=y, = Owp- In this case, the anti-symmetric film plasmornresenting the wedge

plasmon mode propagates parallel to the tip (Big. 9

However, using GOA for the determination of waventers of the wedge
plasmons modes is not possible, similar to CPP sod¥-grooves [20]. This is because
the Bohr-Sommerfeld quantization condition [20, 42] that should determine the wave
numbers of the wedge plasmon modes diverges éiptbéthe wedge (as it did at the tip

of the V-groove for symmetric gap plasmons [20]).

Physically, this is related to the fact that if @ applicable near the tip of the
wedge (see conditions (5), (8) and (9)), then titesymmetric film plasmon propagating
towards the tip at any possible an§leill travel an infinite optical path until it rehes

the tip. As indicated above, such plasmons canaoetbected back from the tip even if



dissipation is ignored. The plasmon asymptoticalyps at the tip and will thus have
infinite localization. Therefore, the localizatiohtbe corresponding wedge plasmon
mode near the tip of the wedge will also be inénify, = + o, and this corresponds to

zero wavelength and velocity. In other words, tleglge plasmon mode does not exist.

Therefore, wedge plasmon modes do not exist indgevd GOA is applicable.
On the contrary, if GOA is not applicable near tipeof the triangular metal wedge, then
the divergence of the Bohr-Sommerfeld quantizatiomdition does not have a physical
meaning [20]. The anti-symmetric film plasmon représig a wedge plasmon mode is
efficiently reflected as it propagates towardstthef the wedge, and this is what is
required for the representation of the wedge plashyothe reflecting anti-symmetric film

plasmon (Fig. 9).

Despite the fact impossibility of using GOA for ttetermination of wave
numbers of wedge plasmon modes, the above consatel@ads to important
conclusions about the existence conditions of wedigemons. These plasmons can only
exist if GOA is not applicable near the tip of tir@ove — this is where significant
reflections of the film plasmon may occur. Thus,admg to the applicability condition
of GOA near the tip (Egs. (8) and (9)), we can atite existence condition for wedge

plasmon modes in a triangular metal wedge as fallow

Y2 Yea. (17)

This condition is thus opposite to inequality (9)deétermines the lower critical
angley.. below which wedge plasmon modes do not existtiraagular metal wedge.

Thus, wedge plasmons exist only within the rangangfles:



Ye2 S Y <VYew (18)

wherey was determined numerically in [26] as the uppéicat angle above which
wedge plasmons do not exist because they beconpéecoio surface plasmons on the
sides of the wedge [26]. Now it is clear why weditee index “2” for the critical angle
Ye2 (see also Eq. (9)). There are two critical anglésrdgning the existence condition of
wedge plasmon modes in a triangular metal wedgeeXample, for a silver wedge in
vacuum at the vacuum wavelengtfa. = 0.6328um, we havey.; = 102 [26], andy,, = 7°

(see above).

6. Conclusions

Using the geometrical optics approximation andapproximation of continuous
electrodynamics, a possibility of effective nanatfsing of anti-symmetric film plasmons
in sharp triangular metal wedges has been demdedirm particular, it was shown that
under the mentioned approximations, these plasrasyisptotically stop at the tip of the
wedge with both their phase and group velocitiesliteg to zero, and the wave vector to
infinity. As a result, an anti-symmetric film plasmincident onto the tip of the wedge at
an arbitrary angle does not experience reflectromfthe tip, but rather propagates an

infinite optical path towards the tip, and eveniydissipates in the metal.

The considered adiabatic regime of nano-focusinglagmons in a metal wedge
may occur only if the wedge angle is smaller tHandritical angle that is determined by
the dielectric permittivities of the metal wedgedathe surrounding dielectric medium.
Noticeable local field enhancement (~ 2 times) hasn predicted near the tip of the
wedge, though this enhancement is about 5 timekevdar the metal wedge than for the

metallic V-groove [20]. The effect of dissipation plasmon nano-focusing by means of a



metallic V-groove was analyzed in detail. In parkir, optimisation of the geometrical
and material parameters of the wedge structuradbieving maximal possible local field
enhancement was carried out. The effect of angle@flence and wavelength of the
electromagnetic radiation on nano-focusing andllbel enhancement in metal wedges
was investigated theoretically. Applicability cotidhs for the obtained results and the

adiabatic approximation were discussed.

It was demonstrated that it is not possible to G&A for the determination of
wave numbers of the strongly localized wedge plasmmodes guided by a triangular
metal wedge, because of the divergence of the Bohmmerfeld quantization condition
near the tip of the wedge. However, the conductedyais based on GOA has led to the
determination of the lower critical angle of thedge, below which wedge plasmon
modes do not exist. Is was shown that wedge plasmates can only exist in the range
of wedge angles between the lower critical angl&(fer a silver wedge in vacuum) and
the previously determined upper critical angtelQ2 for silver wedge in vacuum [26]).
Thus the conditions for adiabatic nano-focusinghiarp metal wedges are opposite to the

conditions of existence of strongly localized weg@tgsmon modes [26].

If conditions for GOA are not satisfied, then tlinedry developed in this paper
fails and numerical methods of analysis (e.g., thase the FDTD algorithm) will be
required. These numerical methods and the analysiom-adiabatic nano-focusing of
plasmons in tapered gaps and wedges have beerodedeah [34]. In particular, it has
been shown that in the non-adiabatic regime of ffanosing reflective energy losses in
the plasmon as it propagates towards the tip mayotieeable and should be taken into
account. These losses are added to the dissipasged, resulting in a reduction of the

local field enhancement near the tip [34].



The obtained results may be important for efficienergy coupling into nano-
optical circuits, development of new optical sessand measurement techniques, near-
field microscopy and spectroscopy, design of nelvsavelength plasmonic waveguides

and interconnectors, etc.
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Figureand Table Captions

Fig. 1. () An infinite triangular metal wedge willie angley and the permittivitye,, surrounded
by a dielectric with the permittivitg;. (b) A ray representing the direction of propagiatof an
anti-symmetric film plasmon in the wedge in the metrical optics approximatiof, is the angle
of propagation of the film plasmon at large disesdrom the tip of the wedge, where the

coupling between the two surface plasmons reprieggtite film plasmon is negligible.

Fig. 2. The dependencies of the real part of theewaumberQ, of the anti-symmetric (a) and
symmetric (b) film plasmon on wedge thicknéssr the following material parameters: @)= —
6.5,&; = 1, vacuum wavelength,,. = 0.4592um, (2)e; = — 16,81 = 1,A\yac = 0.6328um, (3) e, =
— 58.8,61 = 2.5,Avqc = 1.127um, (4) e, = — 58.8,&; = 1, Ay = 1.127um. The real parts of the

metal permittivities correspond to silver at thdigated wavelengths [30,31].

Fig. 3. The dependencies of the real part of theewaumberQ; of the symmetric (a) and anti-
symmetric (b) gap plasmon on gap width for the samaterial parameters as in Fig. 2: €1 —
6.5,&; = 1, vacuum wavelength,. = 0.4592um, (2)e; = — 16,6; = 1, Aysc = 0.6328um, (3) e, =
—58.8,61 = 2.5A\qc = 1.127um, (4)e; = — 58.8,51 = 1, Aysc = 1.127um. For this figureg, is the
permittivity of the dielectric inside the gap, aadis the real part of the permittivity of silver

surrounding the gap (Fig. 3a is reproduced from Zagin [20]).

Fig. 4. The typical dependencies of the term inl&fehand side of inequality (5) for the anti-
symmetric film plasmon (a), symmetric film plasm@y), and anti-symmetric gap plasmon on
distance from the tip (c). The angle of the wedgp/s 2. (1) e, = — 96.6,6; = 2.5,\\ac = 1.631
pm, (2)e; = — 58.8,&1 = 2.5,A\jpc = 1.127um, (3)e; = — 16,81 = 1, Aysc = 0.6328um, (4)e; = —
58.8,&1 = 5, Ajoe = 1.127um, (5) € = — 16,&; = 2.5, Aysc = 0.6328um. Curve 3 in (a) also
approximately corresponds to the other structuth &i= — 58.8&; = 2.5,A\oc = 1.127um, andp

= 1°. The real parts of the metal permittivities cop@sd to silver at the indicated wavelengths
[30,31].

Fig. 5. Examples of plasmon rays for the anti-synimdilm plasmon in a triangular wedge (a),
and symmetric gap plasmon in a V-groove (b). Ihidbe cases, the metal is silver and dielectric
is vacuum withe; = 1 ande; = — 16 [30,31] at the vacuum wavelengtf. = 0.6328um; the
wedge/groove angles are: (¥) and (2) 2 Dashed curved), = 75, solid curvesf, = 45, and
dotted curvesf, = 25. The initial y-coordinates for all the rays correspond to #h&18 nm

thickness/width of the wedge/groove.



Fig. 6. a) Normalized amplitudes of the magnetidfiin the metaH»o(y)/Hago (H200 = Hao(0))
versusy for the anti-symmetric film plasmons incident omi@ tip of the metal wedge with the
angley = 2. There is no dissipation in the meta € 0), the angle of incidend® = 0, and the
permittivities and the wavelengths are as follo(@3e; = — 58.8.£1 = 2.5,A\\ac = 1.127um, (2) &,

= — 16,81 = 1, A\ac = 0.6328um, (3)e; = — 58.8,; = 5, Avac = 1.127um, (4) &, = — 16,6, = 2.5,
Avac = 0.6328um. b) The dependenciét(y)/H2qo for the anti-symmetric film plasmons ext= —
16,&; = 1,A\yac = 0.6328um, and different values &, andy: (1),6, =0,y =4° (2)6, = 45,y =
1° (3)6y =48,y =4° (4)6, = 75, y = 4°. The metal permittivities correspond to the remtp of
the permittivities of silver at the indicated wasedjths [30,31].

Fig. 7. The typicaly-dependencies of the normalized amplitudes of thegnatic field
Hao(Y)/Hoomin in the anti-symmetric film plasmorH{qy,n is the amplitude of the plasmon at the
local minimum of the amplitude) incident onto th af the wedge in the presence of dissipation.
(a) 6o = 0,B = 2, and the other parameters are as followa:, 1= 1.127um, &, = — 58.8 + (does
not correspond to a particular metal)= 2.5; 2)Aoc = 1.127um, €, = — 58.8 + 3.8b(silver),&; =
2.5; 3)Ayac = 0.6328um, &, = — 16 + 0.52(silver),e; = 1; 4)Aysc = 0.6328um, €, = — 16 +i
(silver),&; = 1; 5)Ayec = 0.6328um, &, = — 16 +i (silver), g, = 2.5. (b)e, = - 16 + 0.5R €, = 1,
Avac = 0.6328um, and the angles: By =0,y =4°,2)8, =0,y =2, 3)6, =45,y =4, 4) 6, = 45,
vy=2,5)0,=0,y = 1°[30,31].

Fig. 8. The trapezium wedge of the optimal heighfor maximal local field enhancement at the
exit base of the trapezium. The anti-symmetric fdl@asmon is generated in the trapezium wedge
by means of the end-fire excitation by an incideuik wave focused onto the entry (larger) base
of the trapezium of widtl,;. The maximal local field enhancement is thus adudeat the exit

(smaller) base of the trapezium of widgh,.

Fig. 9. Geometrical optics representation of a veegig@gsmon mode in a triangular metal wedge
with the tip aty = 0 (Fig. 1b). The anti-symmetric film plasmon lvithe wave vectoQ:(y),
representing the wedge plasmon mode, is succegsefidcted from the tip of the groove and the

turning point (caustic); the wave vector of the geglasmon mode,, = Qu.
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