25 research outputs found

    β-delayed particle decay of 9C and the A = 9, T = 1/2 nuclear system: Experiment, data, and phenomenological analysis

    Get PDF
    The β decay of 9C (T1/2 = 126.5 ms) has been studied in two experiments observing about 15 × 107 and 8 × 107 decays, respectively, at the TISOL facility at TRIUMF; different detector configurations were employed in the two experiments. In this first of two papers, the two experimental setups are described, as well as data analysis and a phenomenological approach to deducing branching ratios to and from states in 9B. In the experiments single spectra, and double and triple coincidence spectra, were recorded. Several states in 9B were observed; β-branching ratios to these states, and particle decay channels from these states, are reported. In particular, secondary decays into the 5Li and 8Be ground states were observed. With the inclusion of a considerable continuum and additional states, fair agreement with the reported 9Li logft values is found with a phenomenological approach for deducing the branching ratios. To extend the discussion, in a second, forthcoming paper, a multichannel, multistate R-matrix analysis of these data will be described

    Muon capture by 3He nuclei followed by proton and deuteron production

    Full text link
    The paper describes an experiment aimed at studying muon capture by 3He{}^{3}\mathrm{He} nuclei in pure 3He{}^{3}\mathrm{He} and D2+3He\mathrm{D}_2 + {}^{3}\mathrm{He} mixtures at various densities. Energy distributions of protons and deuterons produced via μ+3Hep+n+n+νμ\mu^-+{}^{3}\mathrm{He}\to p+n+n + \nu_{\mu } and μ+3Hed+n+νμ\mu^-+{}^{3} \mathrm{He} \to d+n + \nu_{\mu} are measured for the energy intervals 104910 - 49 MeV and 133113 - 31 MeV, respectively. Muon capture rates, λcapp(ΔEp)\lambda_\mathrm{cap}^p (\Delta E_p) and λcapd(ΔEd)\lambda_\mathrm{cap}^d (\Delta E_d) are obtained using two different analysis methods. The least--squares methods gives λcapp=(36.7±1.2)s1\lambda_\mathrm{cap}^p = (36.7\pm 1.2) {s}^{- 1}, λcapd=(21.3±1.6)s1\lambda_\mathrm{cap}^d = (21.3 \pm 1.6) {s}^{- 1}. The Bayes theorem gives λcapp=(36.8±0.8)s1\lambda_\mathrm{cap}^p = (36.8 \pm 0.8) {s}^{- 1}, λcapd=(21.9±0.6)s1\lambda_\mathrm{cap}^d = (21.9 \pm 0.6) {s}^{- 1}. The experimental differential capture rates, dλcapp(Ep)/dEpd\lambda_\mathrm{cap}^p (E_p) / dE_p and dλcapd(Ed)/dEd d\lambda_\mathrm{cap}^d (E_d) / dE_d, are compared with theoretical calculations performed using the plane--wave impulse approximation (PWIA) with the realistic NN interaction Bonn B potential. Extrapolation to the full energy range yields total proton and deuteron capture rates in good agreement with former results.Comment: 17 pages, 13 figures, accepted for publication in PR

    Nucleon charge exchange on the deuteron: A critical review

    Full text link
    The existing experimental data on the d(n,p)nn and d(p,n)pp cross sections in the forward direction are reviewed in terms of the Dean sum rule. It is shown that the measurement of the ratio of the charge exchange on the deuteron to that on the proton might, if taken together with other experimental data, allow a direct construction of the np -> np scattering amplitude in the backward direction with few ambiguities.Comment: 7 pages with 3 figure

    Antimatter Regions in the Early Universe and Big Bang Nucleosynthesis

    Get PDF
    We have studied big bang nucleosynthesis in the presence of regions of antimatter. Depending on the distance scale of the antimatter region, and thus the epoch of their annihilation, the amount of antimatter in the early universe is constrained by the observed abundances. Small regions, which annihilate after weak freezeout but before nucleosynthesis, lead to a reduction in the 4He yield, because of neutron annihilation. Large regions, which annihilate after nucleosynthesis, lead to an increased 3He yield. Deuterium production is also affected but not as much. The three most important production mechanisms of 3He are 1) photodisintegration of 4He by the annihilation radiation, 2) pbar-4He annihilation, and 3) nbar-4He annihilation by "secondary" antineutrons produced in anti-4He annihilation. Although pbar-4He annihilation produces more 3He than the secondary nbar-4He annihilation, the products of the latter survive later annihilation much better, since they are distributed further away from the annihilation zone.Comment: 15 pages, 9 figures. Minor changes to match the PRD versio
    corecore