10 research outputs found

    Navigating through the Controversies and Emerging Paradigms in Early Detection of Prostate Cancer:Bridging the Gap from Classic RCTs to Modern Population-Based Pilot Programs

    Get PDF
    Over the last three decades, the European Randomized Study of Screening for Prostate Cancer (ERSPC) and the US-based Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening have steered the conversation around the early detection of prostate cancer. These two randomized trials assessed the effect of screening on prostate cancer disease-specific mortality. Elevated PSA levels were followed by a systematic sextant prostate biopsy. Standard repeat testing intervals were applied. After controversies from 2009 to 2016 due to contradicting results of the two trials, the results aligned in 2016 and showed that early PSA detection reduces prostate cancer-specific mortality. However, overdiagnosis rates of up to 50% were reported, and this sparked an intense debate on harms and benefits for almost 20 years. The balance between harms and benefits is highly debated and has initiated further research to investigate new ways of early detection. In the meantime, the knowledge and tools for the diagnostic algorithm improved. This is a continuously ongoing effort which focuses on individual risk-based screening algorithms that preserve the benefits of the purely PSA-based screening algorithms, while reducing the side effects. An important push towards investigating new techniques for early detection came from the European Commission on the 20th of September 2022. The European Commission published its updated recommendation to investigate prostate, lung, and gastric cancer early detection programs. This opened a new window of opportunity to move away from the trial setting to population-based early detection settings. With this review, we aim to review 30 years of historical evidence of prostate cancer screening, which led to the initiation of the 'The Prostate Cancer Awareness and Initiative for Screening in the European Union' (PRAISE-U) project, which aims to encourage the early detection and diagnosis of PCa through customized and risk-based screening programs.</p

    Health Policy for Prostate Cancer Early Detection in the European Union and the Impact of Opportunistic Screening:PRAISE-U Consortium

    Get PDF
    With the new policy recommendation in 2022 to explore the possibilities of screening for prostate cancer by the European Commission, the landscape for prostate cancer early detection is evolving. In line with this recommendation, the PRAISE-U project aims to evaluate the early detection and diagnosis of prostate cancer through customised and risk-based screening programmes, with the goal to align protocols across European Union member states. This systematic review is part of the PRAISE-U project, with the goal to review the policy, medical guideline recommendations, and the current level of opportunistic screening presented in the scientific literature on prostate cancer early detection from 2016 to 2023 in European Union member states. An extensive literature search was performed on 1 June 2023 in a large number of databases, including Embase.com, Medline (Ovid), Web of Science Core Collection, Google Scholar, and Policy Commons. We identified 318 articles (qualitative, quantitative, and reviews), of which 41 were included in the full-text screening. Seventeen articles were ultimately identified as eligible for inclusion. The included articles revealed significant variations towards PSA-based early detection policies for prostate cancer in nine European countries. Despite official recommendations, opportunistic screening was prevalent across all nine countries regardless of recommendations for or against PSA-based early detection. This systematic review suggests that the current early detection policies are not fit for purpose. High levels of opportunistic screening and overdiagnosis persist, prompting policy recommendations for standardised guidelines, informed decision making, and increased awareness to improve efficiency and effectiveness in early detection.</p

    Navigating through the Controversies and Emerging Paradigms in Early Detection of Prostate Cancer:Bridging the Gap from Classic RCTs to Modern Population-Based Pilot Programs

    Get PDF
    Over the last three decades, the European Randomized Study of Screening for Prostate Cancer (ERSPC) and the US-based Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening have steered the conversation around the early detection of prostate cancer. These two randomized trials assessed the effect of screening on prostate cancer disease-specific mortality. Elevated PSA levels were followed by a systematic sextant prostate biopsy. Standard repeat testing intervals were applied. After controversies from 2009 to 2016 due to contradicting results of the two trials, the results aligned in 2016 and showed that early PSA detection reduces prostate cancer-specific mortality. However, overdiagnosis rates of up to 50% were reported, and this sparked an intense debate on harms and benefits for almost 20 years. The balance between harms and benefits is highly debated and has initiated further research to investigate new ways of early detection. In the meantime, the knowledge and tools for the diagnostic algorithm improved. This is a continuously ongoing effort which focuses on individual risk-based screening algorithms that preserve the benefits of the purely PSA-based screening algorithms, while reducing the side effects. An important push towards investigating new techniques for early detection came from the European Commission on the 20th of September 2022. The European Commission published its updated recommendation to investigate prostate, lung, and gastric cancer early detection programs. This opened a new window of opportunity to move away from the trial setting to population-based early detection settings. With this review, we aim to review 30 years of historical evidence of prostate cancer screening, which led to the initiation of the 'The Prostate Cancer Awareness and Initiative for Screening in the European Union' (PRAISE-U) project, which aims to encourage the early detection and diagnosis of PCa through customized and risk-based screening programs.</p

    Health Policy for Prostate Cancer Early Detection in the European Union and the Impact of Opportunistic Screening:PRAISE-U Consortium

    Get PDF
    With the new policy recommendation in 2022 to explore the possibilities of screening for prostate cancer by the European Commission, the landscape for prostate cancer early detection is evolving. In line with this recommendation, the PRAISE-U project aims to evaluate the early detection and diagnosis of prostate cancer through customised and risk-based screening programmes, with the goal to align protocols across European Union member states. This systematic review is part of the PRAISE-U project, with the goal to review the policy, medical guideline recommendations, and the current level of opportunistic screening presented in the scientific literature on prostate cancer early detection from 2016 to 2023 in European Union member states. An extensive literature search was performed on 1 June 2023 in a large number of databases, including Embase.com, Medline (Ovid), Web of Science Core Collection, Google Scholar, and Policy Commons. We identified 318 articles (qualitative, quantitative, and reviews), of which 41 were included in the full-text screening. Seventeen articles were ultimately identified as eligible for inclusion. The included articles revealed significant variations towards PSA-based early detection policies for prostate cancer in nine European countries. Despite official recommendations, opportunistic screening was prevalent across all nine countries regardless of recommendations for or against PSA-based early detection. This systematic review suggests that the current early detection policies are not fit for purpose. High levels of opportunistic screening and overdiagnosis persist, prompting policy recommendations for standardised guidelines, informed decision making, and increased awareness to improve efficiency and effectiveness in early detection.</p

    Drugs in Development

    No full text

    A saturated map of common genetic variants associated with human height

    No full text
    Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes. Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10-20% (14-24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries

    Comparative map for mice and humans.

    No full text

    The plasmin/plasminogen system and cancer

    No full text

    Comparative map for mice and humans

    No full text
    corecore