7 research outputs found
The Complete Nucleotide Sequence of the Coffee (Coffea Arabica L.) Chloroplast Genome: Organization and Implications for Biotechnology and Phylogenetic Relationships Amongst Angiosperms
The chloroplast genome sequence of Coffea arabica L., the first sequenced member of the fourth largest family of angiosperms, Rubiaceae, is reported. The genome is 155 189 bp in length, including a pair of inverted repeats of 25 943 bp. Of the 130 genes present, 112 are distinct and 18 are duplicated in the inverted repeat. The coding region comprises 79 protein genes, 29 transfer RNA genes, four ribosomal RNA genes and 18 genes containing introns (three with three exons). Repeat analysis revealed five direct and three inverted repeats of 30 bp or longer with a sequence identity of 90% or more. Comparisons of the coffee chloroplast genome with sequenced genomes of the closely related family Solanaceae indicated that coffee has a portion of rps19 duplicated in the inverted repeat and an intact copy of infA. Furthermore, whole-genome comparisons identified large indels (\u3e 500 bp) in several intergenic spacer regions and introns in the Solanaceae, including trnE (UUC)–trnT (GGU) spacer, ycf4–cemA spacer, trnI (GAU) intron and rrn5–trnR (ACG) spacer. Phylogenetic analyses based on the DNA sequences of 61 protein-coding genes for 35 taxa, performed using both maximum parsimony and maximum likelihood methods, strongly supported the monophyly of several major clades of angiosperms, including monocots, eudicots, rosids, asterids, eurosids II, and euasterids I and II. Coffea (Rubiaceae, Gentianales) is only the second order sampled from the euasterid I clade. The availability of the complete chloroplast genome of coffee provides regulatory and intergenic spacer sequences for utilization in chloroplast genetic engineering to improve this important crop
Preliminary report of the working party on animal genetic resources in Europe
International audienc
Ancilla-driven quantum computation with twisted graph states
We introduce a new paradigm for quantum computing called Ancilla-Driven Quantum Computation (ADQC) which combines aspects of the quantum circuit (Deutsch, 1989 [1]) and the one-way model (Raussendorf and Briegel, 2001 [2]) to overcome some of the challenging issues in building large-scale quantum computers. Instead of directly manipulating each qubit to perform universal quantum logic gates or measurements, ADQC uses a fixed two-qubit interaction to couple the memory register of a quantum computer to an ancilla qubit. By measuring the ancilla, the measurement-induced back-action on the system performs the desired logical operations. We characterise all two-qubit interactions which couple any ancilla qubit with any memory qubit, while satisfying certain desirable conditions. We require these interactions to implement unitary, stepwise deterministic and universal evolution. Moreover, it should be possible to standardise the computation, that is, applying all global operations at the beginning. We prove there are only two such classes of interactions characterised in terms of the non-local part of the interaction operator. This leads to the definition of a new entanglement resource called twisted graph states generated from non-commuting operators. The ADQC model is formalised in an algebraic framework similar to the Measurement Calculus (Danos et al., 2007 [8]). Furthermore, we present the notion of causal flow for twisted graph states, based on the stabiliser formalism, to characterise the determinism. Finally we demonstrate a compositional embedding between ADQC and both the one-way and circuit models which will allow us to transfer recently developed theory and toolkits of measurement-based quantum computing directly into ADQC. (c) 2012 Elsevier B.V. All rights reserved