885 research outputs found

    Right-Handed New Physics Remains Strangely Beautiful

    Full text link
    Current data on CP violation in B_d -> eta' K_S and B_d -> phi K_S, taken literally, suggest new physics contributions in b -> s transitions. Despite a claim to the contrary, we point out that right-handed operators with a single weak phase can account for both deviations thanks to the two-fold ambiguity in the extraction of the weak phase from the corresponding CP-asymmetry. This observation is welcome since large mixing in the right-handed sector is favored by many GUT models and frameworks which address the flavor puzzle. There are also interesting correlations with the B_s system which provide a way to test this scenario in the near future.Comment: 7 pages, 9 figures; published version: added 1 reference and 1 clarificatio

    Natural Little Hierarchy from a Partially Goldstone Twin Higgs

    Full text link
    We construct a simple theory in which the fine-tuning of the standard model is significantly reduced. Radiative corrections to the quadratic part of the scalar potential are constrained to be symmetric under a global U(4) x U(4)' symmetry due to a discrete Z_2 "twin" parity, while the quartic part does not possess this symmetry. As a consequence, when the global symmetry is broken the Higgs fields emerge as light pseudo-Goldstone bosons, but with sizable quartic self-interactions. This structure allows the cutoff scale, \Lambda, to be raised to the multi-TeV region without significant fine-tuning. In the minimal version of the theory, the amount of fine-tuning is about 15% for \Lambda = 5 TeV, while it is about 30% in an extended model. This provides a solution to the little hierarchy problem. In the minimal model, the "visible" particle content is exactly that of the two Higgs doublet standard model, while the extended model also contains extra vector-like fermions with masses ~(1-2)TeV. At the LHC, our minimal model may appear exactly as the two Higgs doublet standard model, and new physics responsible for cutting off the divergences of the Higgs mass-squared parameter may not be discovered. Several possible processes that may be used to discriminate our model from the simple two Higgs doublet model are discussed for the LHC and for a linear collider.Comment: 22 page

    Realistic construction of split fermion models

    Get PDF
    The Standard Model flavor structure can be explained in theories where the fermions are localized on different points in a compact extra dimension. We show that models with two bulk scalars compactified on an orbifold can produce such separations in a natural way. We study the shapes and overlaps of the fermion wave functions. We show that, generically, realistic models of Gaussian overlaps are unnatural since they require very large Yukawa couplings between the fermions and the bulk scalars. We give an example of a five dimensional two scalar model that accounts naturally for the observed quark masses, mixing angles and CP violation.Comment: 15 pages, 5 figures, typos corrected, discussion on the implications of SM rare decay processes added, to appear in PR

    Implications of the CP asymmetry in semileptonic B decay

    Get PDF
    Recent experimental searches for ASLA_{SL}, the CP asymmetry in semileptonic B decay, have reached an accuracy of order one percent. Consequently, they give meaningful constraints on new physics. We find that cancellations between the Standard Model (SM) and new physics contributions to B0Bˉ0B^0 - \bar B^0 mixing cannot be as strong as was allowed prior to these measurements. The predictions for this asymmetry within the SM and within models of minimal flavor violation (MFV) are below the reach of present and near future measurements. Including order mc2/mb2m_c^2/m_b^2 and ΛQCD/mb\Lambda_{QCD}/m_b corrections we obtain the SM prediction: 1.3×103<ASL<0.5×103-1.3 \times 10^{-3} < A_{SL} < -0.5 \times 10^{-3}. Future measurements can exclude not only the SM, but MFV as well, if the sign of the asymmetry is opposite to the SM or if it is same-sign but much enhanced. We also comment on the CP asymmetry in semileptonic BsB_s decay, and update the range of the angle βs\beta_s in the SM: 0.026<sin2βs<0.0480.026 < \sin2\beta_s < 0.048.Comment: 16 pages, a sign typo in eq.(11) fixed, to appear in Phys. Rev.

    Microlensing by natural wormholes: theory and simulations

    Get PDF
    We provide an in depth study of the theoretical peculiarities that arise in effective negative mass lensing, both for the case of a point mass lens and source, and for extended source situations. We describe novel observational signatures arising in the case of a source lensed by a negative mass. We show that a negative mass lens produces total or partial eclipse of the source in the umbra region and also show that the usual Shapiro time delay is replaced with an equivalent time gain. We describe these features both theoretically, as well as through numerical simulations. We provide negative mass microlensing simulations for various intensity profiles and discuss the differences between them. The light curves for microlensing events are presented and contrasted with those due to lensing produced by normal matter. Presence or absence of these features in the observed microlensing events can shed light on the existence of natural wormholes in the Universe.Comment: 16 pages, 24 postscript figures (3 coloured), revtex style, submitted to Phys. Rev.

    Statistical Analysis of Different Muon-antineutrino->Electron-antineutrino Searches

    Full text link
    A combined statistical analysis of the experimental results of the LSND and KARMEN \numubnueb oscillation search is presented. LSND has evidence for neutrino oscillations that is not confirmed by the KARMEN experiment. This joint analysis is based on the final likelihood results for both data sets. A frequentist approach is applied to deduce confidence regions. At a combined confidence level of 36%, there is no area of oscillation parameters compatible with both experiments. For the complementary confidence of 1-0.36=64%, there are two well defined regions of oscillation parameters (sin^2(2th),Dm^2) compatible with both experiments.Comment: 25 pages, including 10 figures, submitted to Phys. Rev.

    On the assessment by grazing-incidence small-angle X-ray scattering of replica quality in polymer gratings fabricated by nanoimprint lithography

    Get PDF
    Grazing-incidence small-angle X-ray scattering (GISAXS) can be used to characterize the replica quality of polymer gratings prepared by thermal nanoimprint lithography (NIL). Here it is shown using GISAXS experiments that a series of NIL polymer gratings with different line quality present characteristic features that can be associated with the level of defects per line. Both stamps and NIL polymer gratings exhibit characteristic semicircle-like GISAXS patterns. However NIL polymer gratings with defective lines exhibit GISAXS patterns with an excess of diffuse scattering as compared to those of the corresponding stamps. In a first approach, this effect is attributed to a reduction of the effective length of the lines diffracting coherently as the number of defects per line increases

    Supermassive Binaries and Extragalactic Jets

    Get PDF
    Some quasars show Doppler shifted broad emission line peaks. I give new statistics of the occurrence of these peaks and show that, while the most spectacular cases are in quasars with strong radio jets inclined to the line of sight, they are also almost as common in radio-quiet quasars. Theories of the origin of the peaks are reviewed and it is argued that the displaced peaks are most likely produced by the supermassive binary model. The separations of the peaks in the 3C 390.3-type objects are consistent with orientation-dependent "unified models" of quasar activity. If the supermassive binary model is correct, all members of "the jet set" (astrophysical objects showing jets) could be binaries.Comment: 31 pages, PostScript, missing figure is in ApJ 464, L105 (see http://www.aas.org/ApJ/v464n2/5736/5736.html

    Lepton Masses and Mixing in a Left-Right Symmetric Model with a TeV-scale Gravity

    Get PDF
    We construct a left-right symmetric (LRS) model in five dimensions which accounts naturally for the lepton flavor parameters. The fifth dimension is described by an orbifold, S_1/Z_2 times Z'_2, with a typical size of order TeV^{-1}. The fundamental scale is of order 25 TeV which implies that the gauge hierarchy problem is ameliorated. In addition the LRS breaking scale is of order few TeV which implies that interactions beyond those of the standard model are accessible to near future experiments. Leptons of different representations are localized around different orbifold fixed points. This explains, through the Arkani-Hamed-Schmaltz mechanism, the smallness of the tau mass compared to the electroweak breaking scale. An additional U(1) horizontal symmetry, broken by small parameters, yields the hierarchy in the charged lepton masses, strong suppression of the light neutrino masses and accounts for the mixing parameters. The model yields several unique predictions. In particular, the branching ratio for the lepton flavor violating process mu^- --> e^+ e^- e^- is comparable with its present experimental sensitivity.Comment: 21 pages, 1 figure, references added, discussion on the predictiveness of the model in the generic non-universal case added, to appear in PR

    On Neutrino Masses and a Low Breaking Scale of Left-Right Symmetry

    Full text link
    In left-right symmetric models (LRSM) the light neutrino masses arise from two sources: the seesaw mechanism and a VEV of an SU(2)L_L triplet. If the left-right symmetry breaking, vRv_R, is low, v_R\lsim15\TeV, the contributions to the light neutrino masses from both the seesaw mechanism and the triplet Yukawa couplings are expected to be well above the experimental bounds. We present a minimal LRSM with an additional U(1) symmetry in which the masses induced by the two sources are below the eV scale and the two-fold problem is solved. We further show that, if the U(1) symmetry is also responsible for the lepton flavor structure, the model yields a small mixing angle within the first two lepton generations.Comment: 18 pages references added published versio
    corecore