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Abstract 

 

Grazing Incidence Small Angle X-ray Scattering (GISAXS) can be used in an attempt 

to characterize replica quality of polymer gratings prepared by thermal Nanoimprint 

Lithography (NIL). Here we show that GISAXS experiments performed in a series of 

NIL polymer gratings with different line quality present characteristic features that can 

be associated with the level of defects per line. Both, stamps and NIL polymer gratings 

exhibit characteristic semicircle-like GISAXS patterns. However NIL polymer gratings 

with defective lines exhibit GISAXS patterns with an excess of diffuse scattering as 

compared to those of the corresponding stamps. In a first approach we attribute this 

effect to a reduction of the effective length of the lines diffracting coherently as the 

amount of defects per line increases. 
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1. Introduction 

Nanoimprint lithography (NIL) is a straightforward, high-throughput and high-

resolution patterning technique in which a stamp, with a certain surface pattern, is 

replicated onto a material by mechanical contact(Schift, 2008).  When the material to be 

patterned is a thermoplastic polymer, NIL can be performed by varying the 

thermomechanical properties of the material by heating and cooling. Typically, a hard 

mold with a micro/nanofabricated pattern on its surface is pressed into a polymer. The 

polymer, prepared as a thick slice or spin-coated onto a rigid or flexible substrate, has to 

be heated either above its glass transition temperature (Tg) (Schift, 2008; Cecchini et al., 

2008), in the case of an amorphous polymer, or above its melting temperature (Tm) for a 

semicrystalline one (Hu et al., 2009; Hu & Jonas, 2010). The mold can be removed after 

the polymer film has been cooled down below Tg. This NIL procedure is frequently 

referred to as hot embossing lithography or thermal NIL (Schift, 2008; Hu & Jonas, 

2010). NIL can achieve resolutions beyond the limitations set by light diffraction that 

are encountered in other traditional techniques. In particular, NIL enables controlled 

surface modification of polymer materials for which standard lithographic schemes are 

not applicable due to incompatibility with developers, organic solvents, etc. The 

patterning of flexible polymer substrates in the  micro and  nanometer scale enable new 

applications in the area of photonics (Lochbihler, 2009), photovoltaics (Mayer et al., 

2007; Chen et al., 2012; Meier et al., 2012a) and biology (Lee, 2006; Mills et al., 2005) 

among others. Structural characterization of NIL patterned polymers is commonly 

accomplished by microscopy techniques. The visualization in real space has obvious 

advantages since it provides access to relevant morphological information. However, 

quite frequently visualization is restricted to small and superficial areas of the sample. 

On the contrary, X-ray scattering techniques provide structural information in the 

reciprocal space. The diffraction pattern reveals information averaged over a large 

sample volume covered by the footprint of the incident beam on the material surface 

and enables time-resolved experiments. Consequently, diffraction can provide 

supplementary information to microscopy. In order to perform X-ray diffraction on 

surface patterned polymers it is very convenient to work under total X-ray reflection 

conditions(Müller-Buschbaum, 2006). The technique of Grazing Incidence Small-Angle 

X-ray Scattering (GISAXS) has already been applied to characterize structurally a great 

variety of polymer gratings (Rueda et al., 2012; Meier et al., 2012b; Hlaing et al., 
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2012). Although being NIL an established technique, there is still little understanding 

about the physics underlying the imprint process. In this respect, computer simulation is 

currently being used in an attempt to acquire basic knowledge about physical 

mechanisms involved in NIL (Dirckx & Hardt, 2011; Chandross & Grest, 2012). In 

general, the filling of the mold by the polymer typically involves squeezed-flow and 

complex shear forces. In addition, demolding by detachment of the stamp from the 

solidified polymer involves complex friction forces, displacement of air and capillary 

bridges that typically may produce damages on the nanoimprinted pattern (Schift, 

2008). The main aim of this work is to discuss the potential of GISAXS for the 

assessment of replica quality in some model polymer gratings fabricated by NIL with 

special emphasis to the surface damage induced by demolding.  

2. Experimental part  

2.1. Polymer Materials 

Poly(bisphenol A carbonate) (PBAC) (Lexan ML3021A,SABIC I-P(Innovative 

Plastics), Mw=44.4x10
3
 g/mol, Mn=23.5x10

3
 g/mol (as revealed by size-exclusion 

chromatography) has been used as a model amorphous polymer. PBAC exhibits a glass 

transition temperature Tg = 145ºC, as determined by calorimetry. PBAC is a commodity 

polymer broadly used for everyday life applications. Thin films were prepared by spin 

coating on silicon wafers (100) (Wafer World Inc.) polished on one surface. The wafers 

were previously cleaned with acetone and isopropanol respectively, and dried by 

nitrogen flow. PBAC was dissolved in chloroform (Sigma-Aldrich, reagent grade 

≥98%), with a concentration of 20 g/L. A fixed amount of 0.1 mL of polymer solution 

was deposited by a syringe on a square (2x2 cm
2
) silicon substrate placed in the centre 

of the metallic horizontal plate of the spinner. A rotation speed of 3000 rpm was 

reached after a 0.1 s acceleration period and kept for 1 minute. Polymer films about 

150±20 nm thick, as measured by spectrophotometry (Nanospec 6100), are typically 

obtained under these conditions. 

2.2.Nanofabrication of gratings on silicon stamps  

Hard gratings on silicon were prepared with two different pitches, L=200 nm and 

L=300 nm, with line widths D from 20% to 50% of the pitch. The arrays of lines and 

trenches were fabricated on mesa-type silicon stamps to facilitate the imprinting 

process. The mesa, typically with an area of 0.2x0.2 cm
2
 and 400 nm height, was 
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prepared by means of optical lithography and wet silicon etching (Fig.1a). On top of the 

mesa, arrays of lines 50-150 nm wide were defined by electron beam lithography (Raith 

150 Two, Raith) on a 100 nm resist layer (Poly(methyl methacrylate) 950 kg/mol). The 

e-beam worked by exposing in writing fields of 200x200 m
2
 (Fig. 1b). After the 

development of the resist in methyl isobutyl ketone the patterns were defined by 

deposition of 20 nm of aluminum using e-beam evaporation and lift-off in acetone at 

40°C. The resulting metal patterns were used as a mask for reactive ion etching (AMS 

110 DE), using a mixture of SF6 and C4F8 as reaction gases to achieve vertical profiles 

which allowed to obtain trenches of about 130±30 nm in between the lines (Fig.1c and 

1d). Before the imprinting process, stamps were silanized with trichloro (1H, 1H, 2H, 

2H-perfluorooctyl)-Silanelane in order to avoid sticking of the polymer. 

Characterization of the stamps was performed by SEM (Leo 1530, Zeiss) and AFM 

(Nanoscope V and Dimension 3100, Bruker) in tapping mode. Upon dealing with 

relatively high aspect ratio nanostructures, the convolution of AFM tip shape with that 

of the sample provokes that parallel vertical walls may look slightly asymmetric.  

Preparation of Polymer gratings by NIL 

The silicon gratings were used as stamps to imprint spin-coated thin films of PBAC 

using a thermal nanoimprint system (Obducat). First, a temperature of 180º C was 

reached in about 3 minutes and in absence of pressure. Second, a nominal pressure of 40 

atm was applied for 5 minutes. Third, the temperature was reduced to 80º C, keeping the 

applied pressure. Fourth, pressure was removed and the system was allowed to 

gradually cool down to room temperature. Finally, the stamp was detached from the 

polymer nanostructure. Characterization of the polymer gratings was performed by an 

AFM (Nanoscope Multimode V, Bruker) in tapping mode. 

 

2.4.Grazing Incidence Small Angle X-ray Scattering. 

 Polymer gratings were investigated by means of GISAXS using the BW4 beamline at 

HASYLAB (DORIS, DESY, Hamburg, Germany). The experimental set-up for 

GISAXS has been previously described(Roth et al., 2006; Timmann et al., 2009; 

Perlich et al., 2010; Hernandez et al., 2010) . An X-ray wavelength = 0.13808 nm, 

with a beam size (HxV) of 40x20 m
2
 was used in our experiments. Scattered intensity 
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was recorded by a Mar CCD detector of 2048x2048 pixels with a resolution of 79.1 m 

per pixel, and a sample-to-detector distance of 2.21 m. Samples were positioned 

horizontally and were aligned with the lines parallel to the X-ray beam. Although a 

nominal incidence angle of i= 0.40 was selected, due to the small size of the samples 

(≈1cm) alignment process rendered to experimental incidence angle values of 

0.37±0.04. Acquisition times were optimized in order to get maximum number of 

counts avoiding saturation of the detector. In the present case, typical acquisition times 

of 1 s for stamps and 5 s for NIL polymer gratings were used. In a GISAXS set-up the 

incoming beam and the sample surface normal define the vertical scattering plane 

(Müller-Buschbaum, 2009). Both the scattering plane and the sample plane intersect the 

detector along the meridian and the horizon lines respectively which are the reference to 

measure the horizontal( and the vertical() angles The information can be 

interpreted on the basis of the three orthogonal scattering vectors qz = ( (sini + 

sin), qy = (2) sincos and  qx = (2)(coscos-cosi). While qz provides 

information about structural correlations perpendicular to the sample film, qy probes the 

correlations in horizontal known as in-plane correlations (Müller-Buschbaum, 2009). 

GISAXS images were analyzed by using the software Fit2D (Hammersley, 2004).  

3. Results 

Fig.2 shows the morphology as revealed by AFM of some silicon stamps of similar 

pitch (Lstamp= 300 nm) and different line widths (Dstamp) and heights (Hstamp) (upper 

panel) and the corresponding replicas in PBAC (bottom panel). The NIL polymer 

gratings are formed by parallel rectangular motives (lines) of different widths (Dnil ≈ 

Lstamp-Dstamp) and pitches similar to those of the stamps. Height profiles of both stamps 

and NIL polymer gratings are included. It is worth to remark the obvious decrease in 

surface quality of the NIL polymer gratings, as going from the left figure to the right 

one, most likely caused during demolding by imperfections of the different stamps. A 

qualitative evaluation of the extension of defects along a polymer line can be attempted 

by evaluating the ratio between the darker area, identified as defects, to the lighter area 

(non defective surface) by using a self made MatLab
©

 routine. An example of this 

procedure is illustrated in Fig. 3 for the polymer gratings shown in Fig.2.  

Characteristic GISAXS patterns for the different silicon gratings investigated here are 

shown in Fig. 4 (top panel). As previously described, this type of silicon gratings 

exhibits as dominant feature the presence of spots on a semicircle which is related to the 
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incidence angle used. Spots on the semicircle are accompanied by weaker scattering in 

the vertical direction. Spots are consecutive orders of the first one (nearest to =0
o
) 

whose spacing is related to the grating pitch. It has been previously reported that 

GISAXS patterns of hard gratings are due to the intersection of the Ewald sphere with 

the reciprocal space truncation rods characteristic of the grating (Metzger et al., 1997; 

Baumbach & Lubbert, 1999; Mikulik et al., 2001; Yan & Gibaud, 2007; Wernecke et 

al., 2012). Essentially, similar features are observed for the gratings nanofabricated by 

NIL on PBAC by using the silicon gratings as stamp (Fig. 4, bottom panel).  However, 

it is worth mentioning that the NIL gratings exhibit, besides the characteristic scattering 

on semicircle, significant scattering around the angular region of the Yoneda peak (in 

our case  0.15-0.20
o
) associated with the diffuse scattering(Yoneda, 1963). It is worth 

mentioning that GISAXS patterns of non nanostructurated spin coated polymer films 

exhibit essentially no scattering features out of the scattering plane (Hernandez et al., 

2010). This is the case for the PBAC spin coated thin films previous to the NIL process.   

4. Discussion.  

NIL is a highly dynamic process where the vertical sinking movement of a hard stamp 

is transformed into a three dimensional flow of the soft material with large lateral 

components. In thermal NIL, stamp cavities have to be filled by the polymer which has 

to flow over large distances. At the microscopic level, squeeze flow, displacement of 

air, and capillary bridges have to be considered (Schift, 2008; Dirckx & Hardt, 2011; 

Rowland et al., 2005; Chandross & Grest, 2012). In our case, in order to prepare 

polymer gratings, the mesa design with protruded motives (Fig.1d) is crucial for the 

success of the imprinting due to the concentration of the applied pressure in a small 

area. During NIL process, an amorphous polymer film must be heated up above its glass 

transition temperature and pressed. The polymer deformation occurs near the indenter 

sidewall, and the protrusions of the stamp generate the trenches in the polymer film. 

Each protruded line produces vertical and lateral flows of polymer material which 

interacts with the pressure generated by the adjacent lines. In Fig.5 we have plotted the 

ratio between the heights of the NIL polymer gratings to those of the corresponding 

stamps (Hn=Hnil/ Hstamp) as a function of the ratio of the indenter width to the pitch of 

the mold (Dstamp/Lstamp). This magnitude is referred to as the filling factor of the stamp 

(Fernández Cuesta, 2009). It is worth to emphasize that this study was done for high 

quality NIL polymer gratings like the one shown in the inset of Fig.5 where Hnil could 
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be properly determined. As one can see, the transfer of the stamp structure to the 

polymer film is more effective (Hn  1) for low values of Dstamp/Lstamp.  For a constant 

pitch value (Lstamp) the smaller the Dstamp value the higher the pressure on the polymer 

film beneath the indenter and the bigger is the cavity space where the polymer can flow. 

A similar effect was observed on NIL polymer gratings prepared with stamps of a lower 

pitch L=200 nm. Our results indicate that for values of Dstamp/Lstamp ≤ 0.3, the lines of 

the stamp enter completely in the polymer substrate. For higher filling factors 

(Dstamp/Lstamp > 0.45), corresponding to larger line widths (Dstamp) a lower pressure is 

exerted on the polymer film and the filling of cavities becomes less efficient.  For the 

stamps shown in Fig.2 (upper panel) and the corresponding NIL gratings the filling 

factor is small (Dstamp/Lstamp ≤ 0.3) and therefore the filling of the stamp cavities by the 

polymer was very efficient. Accordingly, in a first approach, we attribute the defective 

surface (Figs. 2e and 2f) as caused during detaching by imperfections of the stamps. 

The quality of the stamp replication in the NIL polymer gratings can be assessed by 

comparison of their GISAXS patterns. Fig. 6 shows the total integrated intensity, along 

the vertical direction of the GISAXS patterns corresponding to the stamps and to the 

NIL polymer gratings shown in Fig.4. The integral intensity was preferred instead of a 

-cut at a selected value in order to capture all the characteristic features of the 

diffraction semicircle involving different -values. It can be seen that the similarity 

between the intensity profiles of the stamps (dotted) and those of the NIL gratings 

(continuous) is particularly good concerning periodicity. Thus, NIL polymer grating 

patterns reproduce rather well both the profile of scattered intensity and the periodicity 

of the gratings in spite of the different surface quality exhibited by the corresponding 

AFM images (Fig. 2, bottom panel). As seen from the GISAXS patterns (Fig.4), the 

NIL polymer gratings exhibit a concentration of the scattered intensity at lower -

values in comparison with that of the stamps which is more homogeneously distributed 

along the semicircle. This is also reflected in Fig.6. Modeling calculations have shown 

that this type of scattering can be simulated by considering one-dimensional crystals 

consisting on boxes of a certain length (Rueda et al., 2012). The length of the box 

controls the shape of the scattering pattern changing from the characteristic semicircle 

for large box lengths, to a rod-like pattern for shorter ones. Thus, in a first approach we 

propose to attribute this effect to a reduction of the effective length of the lines which 

diffract coherently, as the amount of defects on the line increases. As mentioned before, 
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for the NIL polymer gratings, besides the characteristic scattering on semicircle, the 

patterns shown in Fig. 4 (bottom panel) exhibit significant scattering around the region 

of the Yoneda peak. It is known that at exit angles  equal to the critical one there is an 

amplification of the scattering which indicates the presence of diffuse scattering 

(Yoneda, 1963). Fig. 7 represents the scattered intensity along the vertical direction, -

cut, at the position of the first scattering maximum of the GISAXS patterns shown in 

Fig. 4d, 4e, and 4f (continuous lines) for polymer NIL. For the sake of comparison the 

intensity of the cuts, corresponding to the stamps (Fig. 4a, 4b and 4c), has also been 

included (dotted lines). The exit angle  has been normalized to the experimental 

reflection angle of every sample. The excess of scattering around the Yoneda peak 

detected in the GISAXS patterns for the NIL samples can be visualized in Fig.7. In 

addition to the main intensity of the spot at the reflection angle, a remarkable diffuse 

scattering is observed for the NIL polymer gratings in contrast to the near flat 

background observed for the silicon stamps. It is also worth to notice the broadening of 

the main intensity peak for NIL polymer gratings in relation to that for stamps. This 

broadening can be attributed to a decrease of the length the lines diffracting coherently 

and it is in accordance with the presence of defects in the NIL polymer grating surface. 

Fig. 8 shows the ratio between the intensity at the maximum of the Yoneda angle 

region, y, to that of the spot at the reflection angle, i which equals the incidence angle. 

There is a clear correlation of this magnitude with the amount of defects per line as 

estimated by image analysis (Fig.3).  

 

5. Conclusion.  

GISAXS can be used in an attempt to characterize structurally the replica quality of 

polymer gratings prepared by thermal Nanoimprint Lithography. GISAXS patterns of 

NIL polymer gratings with different line quality present characteristic features that, in a 

first approximation, can be associated with the level of defects per line. Both stamps 

and NIL polymer gratings exhibit the characteristic semicircle-like GISAXS patterns 

with a radius corresponding to the incidence angle used. However NIL polymer gratings 

with defective lines present GISAXS patterns with higher intensities around low -

angles and significant diffuse scattering in the region of the Yoneda peak as compared 

to the GISAXS patterns of the corresponding stamps. Taking into account our previous 
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modeling calculations, which considers the gratings as one-dimensional crystals 

consisting of boxes of a certain length, we can attribute this effect to a reduction of the 

effective length of the lines which diffract coherently as the amount of defects on the 

line increases. Although the present study can be considered as an initial step to 

characterize NIL patterned polymers by GISAXS and it remains at a qualitative level, 

we think that the reported effects have potential to be implemented in the assessment of 

replica quality of the NIL process. 
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Figure captions 

 

Fig.1. (a) Scheme of a mesa stamp. (b) SEM image of a typical mesa area patterned by 

e-beam lithography where the single e-beam blocks can be visualized.  (c) AFM height 

image of the stamp grating. (d) AFM height image of the sidewall of the patterned area 

protruding from the mesa. Corresponding height profiles are included at the bottom.  
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Fig.2. AFM height images (5x5 m
2
) of: (Upper panel) different silicon stamps of 

similar pitch (300 nm) and different line width (Dstamp) and line height (Hstamp). (Bottom 

panel) Corresponding PBAC gratings prepared with the stamps.  Height profile of both 

stamps and polymer gratings along a cut perpendicular to the lines is shown below. 
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Fig.3. AFM height images (5 m length) of single lines corresponding to the PBAC 

NIL gratings shown in Fig.2d, 2e and 2f. Bottom labels indicate the estimates of the 

defect level as calculated from the ratio between dark (defective) and total line area. 

 

Fig.4. GISAXS patterns corresponding to the gratings shown in Fig. 2. Top panel: 

Silicon stamps. Bottom panel: NIL polymer (PBAC) gratings.  

 

Fig.5. Ratio (Hn= Hnil/Hstamp) between the heights of the NIL polymer gratings (Hnil)  to 

those of the corresponding stamps (Hstamp) as a function of the ratio of the indenter 

width to the pitch in the stamps (Dstamp/Lstamp) for Lstamp = 300 nm (■). The dashed line 

is a guide for the eyes. As an example, the inset shows an AFM height image (1x1m
2
) 
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and the corresponding height profile normalized with respect to the height of the stamp, 

of a NIL polymer grating with a filling factor of 0.39. 

 

Fig. 6.  Total integrated intensity along the vertical direction of the GISAXS patterns 

corresponding to the NIL polymer gratings (red continuous lines) shown in Fig.4d, 4e 

and 4f respectively. The dotted lines represent the total integrated intensity of the 

corresponding stamps (Fig. 4a, 4b and 4c). The labels indicate the amount of defects as 

estimated by image analysis (Fig.3). 
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Fig. 7.  Intensity along the vertical direction of the GISAXS patterns corresponding to 

the first scattering maximum of the NIL polymer gratings (red continuous lines) shown 

in Fig.4d, 4e and 4f respectively. Dotted lines represent the intensity of the -cuts 

corresponding to the stamps (Fig. 4a, 4b and 4c). The exit angle  has been normalized 

to the angle of incidence, i. Labels indicate the amount of defects as estimated by 

image analysis (Fig.3). 



16 
 

 

Fig. 8.  Intensity ratio between the maximum in the Yoneda angular region, y, and that 

of the reflection angle, i, as a function of the amount of defects per line as estimated by 

image analysis (Fig.3).  

 


