780 research outputs found

    Wnt-11 expression promotes invasiveness and correlates with survival in human pancreatic ductal adeno carcinoma

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest forms of cancer, proving difficult to manage clinically. Wnt-11, a developmentally regulated gene producing a secreted protein, has been associated with various carcinomas but has not previously been studied in PDAC. The present study aimed to elucidate these aspects first in vitro and then in a clinical setting in vivo. Molecular analyses of Wnt-11 expression as well as other biomarkers involved qRT-PCR, RNA-seq and siRNA. Proliferation was measured by MTT; invasiveness was quantified by Boyden chamber (Matrigel) assay. Wnt-11 mRNA was present in three different human PDAC cell lines. Wnt-11 loss affected epithelial-mesenchymal transition and expression of neuronal and stemness biomarkers associated with metastasis. Indeed, silencing Wnt-11 in Panc-1 cells significantly inhibited their Matrigel invasiveness without affecting their proliferative activity. Consistently with the in vitro data, human biopsies of PDAC showed significantly higher Wnt-11 mRNA levels compared with matched adjacent tissues. Expression was significantly upregulated during PDAC progression (TNM stage I to II) and maintained (TNM stages III and IV). Wnt-11 is expressed in PDAC in vitro and in vivo and plays a significant role in the pathophysiology of the disease; this evidence leads to the conclusion that Wnt-11 could serve as a novel, functional biomarker PDA

    Symmetry in the insulator - quantum Hall - insulator transitions observed in a Ge/SiGe quantum well

    Full text link
    We examine the magnetic field driven insulator-quantum Hall-insulator transitions of the two dimensional hole gas in a Ge/SiGe quantum well. We observe direct transitions between low and high magnetic field insulators and the ν=1\nu=1 quantum Hall state. With increasing magnetic field, the transitions from insulating to quantum Hall and quantum Hall to insulating are very similar with respect to their transport properties. We address the temperature dependence around the transitions and show that the characteristic energy scale for the high field transition is larger.Comment: 4 page

    Energy Release During Slow Long Duration Flares Observed by RHESSI

    Get PDF
    Slow Long Duration Events (SLDEs) are flares characterized by long duration of rising phase. In many such cases impulsive phase is weak with lack of typical short-lasting pulses. Instead of that smooth, long-lasting Hard X-ray (HXR) emission is observed. We analysed hard X-ray emission and morphology of six selected SLDEs. In our analysis we utilized data from RHESSI and GOES satellites. Physical parameters of HXR sources were obtained from imaging spectroscopy and were used for the energy balance analysis. Characteristic time of heating rate decrease, after reaching its maximum value, is very long, which explains long rising phase of these flares.Comment: Accepted for publication in Solar Physic

    Two-dimensional negative donors in magnetic fields

    Full text link
    A finite-difference solution of the Schroedinger equation for negative donor centers D^- in two dimensions is presented. Our approach is of exact nature and allows us to resolve a discrepancy in the literature on the ground state of a negative donor. Detailed calculations of the energies for a number of states show that for field strengths less than \gamma=0.117 a.u. the donor possesses one bound state, for 0.117<\gamma<1.68 a.u. there exist two bound states and for field strengths \gamma>1.68 a.u. the system possesses three bound states. Further relevant characteristics of negative donors in magnetic fields are provided.Comment: 7 pages, 1 figur

    Forward genetic screen of human transposase genomic rearrangements

    Get PDF
    BACKGROUND: Numerous human genes encode potentially active DNA transposases or recombinases, but our understanding of their functions remains limited due to shortage of methods to profile their activities on endogenous genomic substrates. RESULTS: To enable functional analysis of human transposase-derived genes, we combined forward chemical genetic hypoxanthine-guanine phosphoribosyltransferase 1 (HPRT1) screening with massively parallel paired-end DNA sequencing and structural variant genome assembly and analysis. Here, we report the HPRT1 mutational spectrum induced by the human transposase PGBD5, including PGBD5-specific signal sequences (PSS) that serve as potential genomic rearrangement substrates. CONCLUSIONS: The discovered PSS motifs and high-throughput forward chemical genomic screening approach should prove useful for the elucidation of endogenous genome remodeling activities of PGBD5 and other domesticated human DNA transposases and recombinases

    Classification of a supersolid: Trial wavefunctions, Symmetry breakings and Excitation spectra

    Full text link
    A state of matter is characterized by its symmetry breaking and elementary excitations. A supersolid is a state which breaks both translational symmetry and internal U(1) U(1) symmetry. Here, we review some past and recent works in phenomenological Ginsburg-Landau theories, ground state trial wavefunctions and microscopic numerical calculations. We also write down a new effective supersolid Hamiltonian on a lattice. The eigenstates of the Hamiltonian contains both the ground state wavefunction and all the excited states (supersolidon) wavefunctions. We contrast various kinds of supersolids in both continuous systems and on lattices, both condensed matter and cold atom systems. We provide additional new insights in studying their order parameters, symmetry breaking patterns, the excitation spectra and detection methods.Comment: REVTEX4, 19 pages, 3 figure

    A Quantitative Model of Energy Release and Heating by Time-dependent, Localized Reconnection in a Flare with a Thermal Loop-top X-ray Source

    Full text link
    We present a quantitative model of the magnetic energy stored and then released through magnetic reconnection for a flare on 26 Feb 2004. This flare, well observed by RHESSI and TRACE, shows evidence of non-thermal electrons only for a brief, early phase. Throughout the main period of energy release there is a super-hot (T>30 MK) plasma emitting thermal bremsstrahlung atop the flare loops. Our model describes the heating and compression of such a source by localized, transient magnetic reconnection. It is a three-dimensional generalization of the Petschek model whereby Alfven-speed retraction following reconnection drives supersonic inflows parallel to the field lines, which form shocks heating, compressing, and confining a loop-top plasma plug. The confining inflows provide longer life than a freely-expanding or conductively-cooling plasma of similar size and temperature. Superposition of successive transient episodes of localized reconnection across a current sheet produces an apparently persistent, localized source of high-temperature emission. The temperature of the source decreases smoothly on a time scale consistent with observations, far longer than the cooling time of a single plug. Built from a disordered collection of small plugs, the source need not have the coherent jet-like structure predicted by steady-state reconnection models. This new model predicts temperatures and emission measure consistent with the observations of 26 Feb 2004. Furthermore, the total energy released by the flare is found to be roughly consistent with that predicted by the model. Only a small fraction of the energy released appears in the super-hot source at any one time, but roughly a quarter of the flare energy is thermalized by the reconnection shocks over the course of the flare. All energy is presumed to ultimately appear in the lower-temperature T<20 MK, post-flare loops

    Quantifying the levitation picture of extended states in lattice models

    Full text link
    The behavior of extended states is quantitatively analyzed for two dimensional lattice models. A levitation picture is established for both white-noise and correlated disorder potentials. In a continuum limit window of the lattice models we find simple quantitative expressions for the extended states levitation, suggesting an underlying universal behavior. On the other hand, these results point out that the Quantum Hall phase diagrams may be disorder dependent.Comment: 5 pages, submitted to PR

    Levitation of quantum Hall critical states in a lattice model with spatially correlated disorder

    Full text link
    The fate of the current carrying states of a quantum Hall system is considered in the situation when the disorder strength is increased and the transition from the quantum Hall liquid to the Hall insulator takes place. We investigate a two-dimensional lattice model with spatially correlated disorder potentials and calculate the density of states and the localization length either by using a recursive Green function method or by direct diagonalization in connection with the procedure of level statistics. From the knowledge of the energy and disorder dependence of the localization length and the density of states (DOS) of the corresponding Landau bands, the movement of the current carrying states in the disorder--energy and disorder--filling-factor plane can be traced by tuning the disorder strength. We show results for all sub-bands, particularly the traces of the Chern and anti-Chern states as well as the peak positions of the DOS. For small disorder strength WW we recover the well known weak levitation of the critical states, but we also reveal, for larger WW, the strong levitation of these states across the Landau gaps without merging. We find the behavior to be similar for exponentially, Gaussian, and Lorentzian correlated disorder potentials. Our study resolves the discrepancies of previously published work in demonstrating the conflicting results to be only special cases of a general lattice model with spatially correlated disorder potentials. To test whether the mixing between consecutive Landau bands is the origin of the observed floating, we truncate the Hilbert space of our model Hamiltonian and calculate the behavior of the current carrying states under these restricted conditions.Comment: 10 pages, incl. 13 figures, accepted for publication in PR

    Revisiting the Bs(∗)B^{(*)}_s-Meson Production at the Hadronic Colliders

    Full text link
    The production of heavy-flavored hadron at the hadronic colliders provides a challenging opportunity to test the validity of pQCD predictions. There are two mechanisms for the Bs(∗)B^{(*)}_s hadroproduction, i.e. the gluon-gluon fusion mechanism via the subprocess g+g→Bs(∗)+b+sˉg+g\rightarrow B^{(*)}_s+b+\bar{s} and the extrinsic heavy quark mechanism via the subprocesses g+bˉ→Bs(∗)+sˉg+\bar{b}\to B^{(*)}_s +\bar{s} and g+s→Bs(∗)+bg+s\to B^{(*)}_s +b, both of which shall have sizable contributions in proper kinematic region. Different from the fixed-flavor-number scheme (FFNS) previously adopted in the literature, we study the Bs(∗)B^{(*)}_s hadroproduction under the general-mass variable-flavor-number scheme (GM-VFNS), in which we can consistently deal with the double counting problem from the above two mechanisms. Properties for the Bs(∗)B^{(*)}_s hadroproduction are discussed. To be useful reference, a comparative study of FFNS and GM-VFNS is presented. Both of which can provide reasonable estimations for the Bs(∗)B^{(*)}_s hadroproduction. At the Tevatron, the difference between these two schemes is small, however such difference is obvious at the LHC. The forthcoming more precise data on LHC shall provide a good chance to check which scheme is more appropriate to deal with the Bs(∗)B^{(*)}_s-meson production and to further study the heavy quark components in hadrons.Comment: 18 pages, 8 figures, 4 tables. To match the published version. To be published in Eur.Phys.J.
    • …
    corecore