6 research outputs found

    Impact of a large-scale area closure on patterns of fishing disturbance and the consequences for benthic communities

    No full text
    Seasonal area closures of fisheries are primarily used to reduce fishing mortality on target species. In the absence of effort controls, fishing vessels displaced from a closed area will impact fish populations and the environment elsewhere. Based on the observed response of the North Sea beam trawl fleet to the closure of the "cod box" and an existing size-based model of the impacts of beam trawling, we predict the effects of seasonal area closures on benthic communities in the central North Sea. We suggest that repeated seasonal area closures would lead to a slightly more homogeneous distribution of annual trawling activity, although the distribution would remain patchy rather than random. The increased homogeneity, coupled with the displacement of trawling activity to previously unfished areas, is predicted to have slightly greater cumulative impacts on total benthic invertebrate production and lead to localized reductions in benthic biomass for several years. To ensure the effective integration of fisheries and environmental management, the wider consequences of fishery management actions should be considered a priori. Thus, when seasonal closures increase the homogeneity of overall disturbance or lead to the redistribution of trawling activity to environmentally sensitive or previously unfished areas, then effort reductions or permanent area closures should be considered as a management option. The latter would lead to a single but permanent redistribution of fishing disturbance, with lower cumulative impacts on benthic communities in the long run

    Modification of marine habitats by trawling activities: prognosis and solutions

    No full text
    Fishing affects the seabed habitat worldwide on the continental shelf. These impacts are patchily distributed according to the spatial and temporal variation in fishing effort that results from fishers' behaviour. As a consequence, the frequency and intensity of fishing disturbance varies among different habitat types. Different fishing methodologies vary in the degree to which they affect the seabed. Structurally complex habitats (e.g. seagrass meadows, biogenic reefs) and those that are relatively undisturbed by natural perturbations (e.g. deep-water mud substrata) are more adversely affected by fishing than unconsolidated sediment habitats that occur in shallow coastal waters. These habitats also have the longest recovery trajectories in terms of the recolonization of the habitat by the associated fauna. Comparative studies of areas of the seabed that have experienced different levels of fishing activity demonstrate that chronic fishing disturbance leads to the removal of high-biomass species that are composed mostly of emergent seabed organisms. Contrary to the belief of fishers that fishing enhances seabed production and generates food for target fish species, productivity is actually lowered as fishing intensity increases and high-biomass species are removed from the benthic habitat. These organisms also increase the topographic complexity of the seabed which has been shown to provide shelter for juvenile fishes, reducing their vulnerability to predation. Conversely, scavengers and small-bodied organisms, such as polychaete worms, dominate heavily fished areas. Major changes in habitat can lead to changes in the composition of the resident fish fauna. Fishing has indirect effects on habitat through the removal of predators that control bio-engineering organisms such as algal-grazing urchins. Fishing gear resuspend the upper layers of sedimentary seabed habitats and hence remobilize contaminants and fine particulate matter into the water column. The ecological significance of these fishing effects has not yet been determined but could have implications for eutrophication and biogeochemical cycling. Simulation results suggest that the effects of low levels of trawling disturbance will be similar to those of natural bioturbators. In contrast, high levels of trawling disturbance cause sediment systems to become unstable due to large carbon fluxes between oxic and anoxic carbon compartments. In low energy habitats, intensive trawling disturbance may destabilize benthic system chemical fluxes, which has the potential to propagate more widely through the marine ecosystem. Management regimes that aim to incorporate both fisheries and habitat conservation objectives can be achieved through the appropriate use of a number of approaches, including total and partial exclusion of towed bottom fishing gears, and seasonal and rotational closure techniques. However, the inappropriate use of closed areas may displace fishing activities into habitats that are more vulnerable to disturbance than those currently trawled by fishers. In many cases, the behaviour of fishers constrains the extent of the impact of their fishing activities. Management actions that force them to redistribute their effort may be more damaging in the longer term
    corecore