1,747 research outputs found

    Intertemporal Indicator Evaluation: A Preliminary Note on Problems for Evaluating Time Stream Data for Environmental Policy Analysis

    Get PDF
    Assumptions regarding the aggregation of time stream data (e.g. "discounting") are crucial in the evaluation of regional development proposals and the assessment of environmental impacts. Nonetheless, present practice reflects a great deal of confusion, ambiguity, caprice, and downright error in the calculation and implementation of such assumptions. We present in this paper the outlines of an approach to inter-temporal indicator evaluation for use in the analysis of regional development alternatives. Our ultimate objective is pragmatic: We wish to develop a practical framework for the reduction and comparison of time stream data for evaluation of public programs and policies. As a foundation for this approach, however, it has been necessary critically to review the existing controversy on intertemporal aggregation in a public policy context, and to clarify the practical implications of the, points at issue. Three interrelated themes pervade this review and provide a conceptual focus for the work

    Study of solid 4He in two dimensions. The issue of zero-point defects and study of confined crystal

    Full text link
    Defects are believed to play a fundamental role in the supersolid state of 4He. We report on studies by exact Quantum Monte Carlo (QMC) simulations at zero temperature of the properties of solid 4He in presence of many vacancies, up to 30 in two dimensions (2D). In all studied cases the crystalline order is stable at least as long as the concentration of vacancies is below 2.5%. In the 2D system for a small number, n_v, of vacancies such defects can be identified in the crystalline lattice and are strongly correlated with an attractive interaction. On the contrary when n_v~10 vacancies in the relaxed system disappear and in their place one finds dislocations and a revival of the Bose-Einstein condensation. Thus, should zero-point motion defects be present in solid 4He, such defects would be dislocations and not vacancies, at least in 2D. In order to avoid using periodic boundary conditions we have studied the exact ground state of solid 4He confined in a circular region by an external potential. We find that defects tend to be localized in an interfacial region of width of about 15 A. Our computation allows to put as upper bound limit to zero--point defects the concentration 0.003 in the 2D system close to melting density.Comment: 17 pages, accepted for publication in J. Low Temp. Phys., Special Issue on Supersolid

    Zero-point vacancies in quantum solids

    Full text link
    A Jastrow wave function (JWF) and a shadow wave function (SWF) describe a quantum solid with Bose--Einstein condensate; i.e. a supersolid. It is known that both JWF and SWF describe a quantum solid with also a finite equilibrium concentration of vacancies x_v. We outline a route for estimating x_v by exploiting the existing formal equivalence between the absolute square of the ground state wave function and the Boltzmann weight of a classical solid. We compute x_v for the quantum solids described by JWF and SWF employing very accurate numerical techniques. For JWF we find a very small value for the zero point vacancy concentration, x_v=(1.4\pm0.1) x 10^-6. For SWF, which presently gives the best variational description of solid 4He, we find the significantly larger value x_v=(1.4\pm0.1) x 10^-3 at a density close to melting. We also study two and three vacancies. We find that there is a strong short range attraction but the vacancies do not form a bound state.Comment: 19 pages, submitted to J. Low Temp. Phy

    Annealing Effect for Supersolid Fraction in 4^4He

    Full text link
    We report on experimental confirmation of the non-classical rotational inertia (NCRI) in solid helium samples originally reported by Kim and Chan. The onset of NCRI was observed at temperatures below ~400 mK. The ac velocity for initiation of the NCRI suppression is estimated to be ~10 ÎĽ\mum/sec. After an additional annealing of the sample at T=1.8T= 1.8 K for 12 hours, ~ 10% relative increase of NCRI fraction was observed. Then after repeated annealing with the same conditions, the NCRI fraction was saturated. It differs from Reppy's observation on a low pressure solid sample.Comment: to be published in J. of Low Temp. Phys. (QFS2006 proceedings

    Two-body correlations and the superfluid fraction for nonuniform systems

    Full text link
    We extend the one-body phase function upper bound on the superfluid fraction in a periodic solid (a spatially ordered supersolid) to include two-body phase correlations. The one-body current density is no longer proportional to the gradient of the one-body phase times the one-body density, but rather it depends also on two-body correlation functions. The equations that simultaneously determine the one-body and two-body phase functions require a knowledge of one-, two-, and three-body correlation functions. The approach can also be extended to disordered solids. Fluids, with two-body densities and two-body phase functions that are translationally invariant, cannot take advantage of this additional degree of freedom to lower their energy.Comment: 13 page

    Effective theory for wall-antiwall system

    Full text link
    We propose a useful method for deriving the effective theory for a system where BPS and anti-BPS domain walls coexist. Our method respects an approximately preserved SUSY near each wall. Due to the finite width of the walls, SUSY breaking terms arise at tree-level, which are exponentially suppressed. A practical approximation using the BPS wall solutions is also discussed. We show that a tachyonic mode appears in the matter sector if the corresponding mode function has a broader profile than the wall width.Comment: LaTeX file, 30 page, 5 eps figures, references adde

    The PER model of abstract non-interference

    Get PDF
    Abstract. In this paper, we study the relationship between two models of secure information flow: the PER model (which uses equivalence relations) and the abstract non-interference model (which uses upper closure operators). We embed the lattice of equivalence relations into the lattice of closures, re-interpreting abstract non-interference over the lattice of equivalence relations. For narrow abstract non-interference, we show non-interference it is strictly less general. The relational presentation of abstract non-interference leads to a simplified construction of the most concrete harmless attacker. Moreover, the PER model of abstract noninterference allows us to derive unconstrained attacker models, which do not necessarily either observe all public information or ignore all private information. Finally, we show how abstract domain completeness can be used for enforcing the PER model of abstract non-interference
    • …
    corecore