13 research outputs found

    Cloning and nucleotide sequence of the tzs

    No full text

    Clear sky UV simulations for the 21st century based on ozone and temperature projections from Chemistry-Climate Models

    No full text
    We have estimated changes in surface solar ultraviolet (UV) radiation under cloud free conditions in the 21st century based on simulations of 11 coupled Chemistry-Climate Models (CCMs). The total ozone columns and vertical profiles of ozone and temperature projected from CCMs were used as input to a radiative transfer model in order to calculate the corresponding erythemal irradiance levels. Time series of monthly erythemal irradiance received at the surface during local noon are presented for the period 1960 to 2100. Starting from the first decade of the 21st century, the surface erythemal irradiance decreases globally as a result of the projected stratospheric ozone recovery at rates that are larger in the first half of the 21st century and smaller towards its end. This decreasing tendency varies with latitude, being more pronounced over areas where stratospheric ozone

    Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models

    Get PDF
    International audienceProjections of stratospheric ozone from a suite of chemistry-climate models (CCMs) have been analyzed. In addition to a reference simulation where anthropogenic halogenated ozone depleting substances (ODSs) and greenhouse gases (GHGs) vary with time, sensitivity simulations with either ODSs or GHGs concentrations fixed at 1960 levels were performed to disaggregate the drivers of projected ozone changes. These simulations were also used to assess the two distinct milestones of ozone returning to historical values (ozone return dates) and ozone no longer being influenced by ODSs (full ozone recovery). These two milestones are different. The date of ozone returning to historical values does not indicate complete recovery from ODSs in most cases, because GHG induced changes accelerate or decelerate ozone changes in many regions. In the upper stratosphere where GHG induced stratospheric cooling increases ozone, full ozone recovery has not likely occurred by 2100 while ozone returns to its 1980 or even 1960 levels well before (~2025 and 2040, respectively). In contrast, in the tropical lower stratosphere ozone decreases continuously from 1960 to 2100 due to projected increases in tropical upwelling, while by around 2040 it is already very likely that full recovery from the effects of ODSs has occurred, although ODS concentrations are still elevated by this date. In the lower midlatitude stratosphere the evolution differs from that in the tropics, and rather than a steady decrease of ozone, first a decrease of ozone is simulated between 1960 and 2000, which is then followed by a steady increase throughout the 21st century
    corecore