1,256 research outputs found
Universal and unique features of kinesin motors: Insights from a comparison of fungal and animal conventional kinesins
Kinesins are microtubule motors that use the energy derived from the hydrolysis of ATP to move unidirectionally along microtubules, The founding member of this still growing superfamily is conventional kinesin, a dimeric motor that moves processively towards the plus end of microtubules, Within the family of conventional kinesins, two groups can be distinguished to date, one derived from animal species, and one originating from filamentous fungi. So far no conventional kinesin has been reported from plant cells. Fungal and animal conventional kinesins differ in several respects, both in terms of their primary sequence and their physiological properties. Thus all fungal conventional kinesins move at velocities that are 4-5 times higher than those of animal conventional kinesins, and all of them appear to lack associated light chains. Both groups of motors are characterized by a number of group-specific sequence features which are considered here with respect to their functional importance. Animal and fungal conventional kinesins also share a number of sequence characteristics which point to common principles of motor function. The overall domain organization is remarkably similar. A C-terminal sequence motif common to all kinesins, which constitutes the only region of high homology outside the motor domain, suggests common principles of cargo association in both groups of motors. Consideration of the differences of, and similarities between, fungal and animal kinesins offers novel possibilities for experimentation (e.g., by constructing chimeras) that can be expected to contribute to our understanding of motor function
Insight into aspheric misfit with hard tools: mapping the island of low mid-spatial frequencies
This paper addresses computer numerical control (CNC) polishing of aspheric or freeform optics. Prior CNC grinding of the asphere tends to produce mid-spatial frequencies (MSFs) at some level. Precessions polishing can rectify these, but the very ability of the bonnet tooling to adapt to the local asphere enables it to do so, at least in part, to similar spatial frequencies in the MSFs. To accelerate smoothing, hard tools can, in principle, be used, but aspheric misfit is often assumed to preclude this. In this paper, we explore new insight into the role of abrasive particle size in accommodating misfit. First, we report on a glass-bending rig to produce a continuous range of complex surfaces, while withstanding process forces. Then, we describe how this was used to evaluate the triangle of misfit, abrasive size, and MSFs produced for hard rotating tools. This has revealed a regime in which such tools can be used without introducing significant new MSFs, as evidenced by manufacture of prototype off-axis aspheric segments for the European Extremely Large Telescope project
Generalized conductance sum rule in atomic break junctions
When an atomic-size break junction is mechanically stretched, the total
conductance of the contact remains approximately constant over a wide range of
elongations, although at the same time the transmissions of the individual
channels (valence orbitals of the junction atom) undergo strong variations. We
propose a microscopic explanation of this phenomenon, based on Coulomb
correlation effects between electrons in valence orbitals of the junction atom.
The resulting approximate conductance quantization is closely related to the
Friedel sum rule.Comment: 4 pages, 1 figure, appears in Proceedings of the NATO Advanced
Research Workshop ``Size dependent magnetic scattering'', Pecs, Hungary, May
28 - June 1, 200
The role of robotics in computer controlled polishing of large and small optics
Following formal acceptance by ESO of three 1.4m hexagonal off-axis prototype mirror segments, one circular segment, and certification of our optical test facility, we turn our attention to the challenge of segment mass-production. In this paper, we focus on the role of industrial robots, highlighting complementarity with Zeeko CNC polishing machines, and presenting results using robots to provide intermediate processing between CNC grinding and polishing. We also describe the marriage of robots and Zeeko machines to automate currently manual operations; steps towards our ultimate vision of fully autonomous manufacturing cells, with impact throughout the optical manufacturing community and beyond
Electronic structure study of double perovskites FeReO (A=Ba,Sr,Ca) and SrMoO (M=Cr,Mn,Fe,Co) by LSDA and LSDA+U
We have implemented a systematic LSDA and LSDA+U study of the double
perovskites FeReO (A=Ba,Sr,Ca) and SrMoO
(M=Cr,Mn,Fe,Co) for understanding of their intriguing electronic and magnetic
properties. The results suggest a ferrimagnetic (FiM) and half-metallic (HM)
state of FeReO (A=Ba,Sr) due to a pdd- coupling between the
down-spin Re/Fe orbitals via the intermediate O
ones, also a very similar FiM and HM state of SrFeMoO.
In contrast, a decreasing Fe component at Fermi level () in the
distorted CaFeReO partly accounts for its nonmetallic behavior,
while a finite - coupling between the down-spin
Re/Fe orbitals being present at serves to
stabilize its FiM state. For SrCrMoO compared with
SrFeMoO, the coupling between the down-spin Mo/Cr
orbitals decreases as a noticeable shift up of the Cr 3d
levels, which is likely responsible for the decreasing value and weak
conductivity. Moreover, the calculated level distributions indicate a
Mn(Co)/Mo ionic state in SrMnMoO
(SrCoMoO), in terms of which their antiferromagnetic insulating
ground state can be interpreted. While orbital population analyses show that
owing to strong intrinsic pd covalence effects, SrMoO
(M=Cr,Mn,Fe,Co) have nearly the same valence state combinations, as accounts
for the similar M-independent spectral features observed in them.Comment: 21 pages, 3 figures. to be published in Phys. Rev. B on 15th Se
Ractopamine-induced changes in sarcoplasmic proteome profile of post-rigor pork semimembranosus muscle
Ractopamine is a beta-adrenergic agonist that increases leanness and carcass weight in finishing pigs. Our previous study observed that dietary ractopamine increased the abundance of several glycolytic enzymes in the sarcoplasmic proteome of post-rigor pork longissimus thoracis muscle. Pork semimembranosus is an economically important muscle and demonstrates differences in biochemistry compared with longissimus thoracis. Nonetheless, the effects of ractopamine on sarcoplasmic proteome of semimembranosus have not been evaluated yet. Therefore, this study examined the influence of ractopamine on sarcoplasmic proteome of post-rigor pork semimembranosus. Analyses of sarcoplasmic proteome of semimembranosus muscles from control (CON; diet without ractopamine) and ractopamine-fed (RAC; 7.4 mg/kg for 14 days followed by 10.0 mg/kg for 14 days) barrows revealed that haemoglobin subunit beta, alpha-crystallin B, and titin fragments were over-abundant in CON. In contrast, myosin light chain 1/3 and tripartite motif-containing protein 72 were over-abundant in RAC. The low abundance of haemoglobin subunit beta and alpha crystallin B in RAC could be attributed to fibre type shift (from oxidative to glycolytic) in response to ractopamine. The over-abundance of MLC 1/3 and tripartite motif-containing protein 72 in RAC could be due to the increased myofibrillar protein synthesis and muscle mass in ractopamine-fed pigs. Dietary ractopamine decreased the abundance of sarcoplasmic proteins involved in oxygen transport and chaperone activity, but increased the abundance of proteins involved in muscle contraction and plasma membrane repair in pork semimembranosus muscle.Keywords: Pork, ractopamine, sarcoplasmic proteome, semimembranosu
Spatial distribution of photoelectrons participating in formation of x-ray absorption spectra
Interpretation of x-ray absorption near-edge structure (XANES) experiments is
often done via analyzing the role of particular atoms in the formation of
specific peaks in the calculated spectrum. Typically, this is achieved by
calculating the spectrum for a series of trial structures where various atoms
are moved and/or removed. A more quantitative approach is presented here, based
on comparing the probabilities that a XANES photoelectron of a given energy can
be found near particular atoms. Such a photoelectron probability density can be
consistently defined as a sum over squares of wave functions which describe
participating photoelectron diffraction processes, weighted by their normalized
cross sections. A fine structure in the energy dependence of these
probabilities can be extracted and compared to XANES spectrum. As an
illustration of this novel technique, we analyze the photoelectron probability
density at the Ti K pre-edge of TiS2 and at the Ti K-edge of rutile TiO2.Comment: Journal abstract available on-line at
http://link.aps.org/abstract/PRB/v65/e20511
CP--Violating Invariants in Supersymmetry
I study the weak basis CP-violating invariants in supersymmetric models, in
particular those which cannot be expressed in terms of the Jarlskog--type
invariants, and find basis--independent conditions for CP conservation. With an
example of the K-anti-K mixing, I clarify what are the combinations of
supersymmetric parameters which are constrained by experiment.Comment: matches the PRD versio
Effect of B-site Dopants on Magnetic and Transport Properties of LaSrCoRuO
Effect of Co, Ru and Cu substitution at B and B' sites on the magnetic and
transport properties of LaSrCoRuO have been investigated. All the doped
compositions crystallize in the monoclinic structure in the space group
indicating a double perovskite structure. While the magnetization and
conductivity increase in Co and Ru doped compounds, antiferromagnetism is seen
to strengthen in the Cu doped samples. These results are explained on the basis
of a competition between linear Co-O-Ru-O-Co and perpendicular Co-O-O-Co
antiferromagnetic interactions and due to formation of Ru-O-Ru ferromagnetic
networks
The first dozen years of the history of ITEP Theoretical Physics Laboratory
The theoretical investigations at ITEP in the years 1945-1958 are reviewed.
There are exposed the most important theoretical results, obtained in the
following branches of physics: 1) the theory of nuclear reactors on thermal
neutrons; 2) the hydrogen bomb project ("Tube" in USSR and "Classical Super" in
USA); 3) radiation theory; ~4) low temperature physics; 5) quantum
electrodynamics and quantum field theories; 6) parity violation in weak
interactions, the theory of -decay and other weak processes; 7) strong
interaction and nuclear physics. To the review are added the English
translations of few papers, originally published in Russian, but unknown (or
almost unknown) to Western readers.Comment: 55 pages, 5 fig
- …