19 research outputs found
Cardiometabolic Risk Assessments by Body Mass Index z -Score or Waist-to-Height Ratio in a Multiethnic Sample of Sixth-Graders
Convention defines pediatric adiposity by the body mass index z-score (BMIz) referenced to normative growth charts. Waist-to-height ratio (WHtR) does not depend on sex-and-age references. In the HEALTHY Study enrollment sample, we compared BMIz with WHtR for ability to identify adverse cardiometabolic risk. Among 5,482 sixth-grade students from 42 middle schools, we estimated explanatory variations (R2) and standardized beta coefficients of BMIz or WHtR for cardiometabolic risk factors: insulin resistance (HOMA-IR), lipids, blood pressures, and glucose. For each risk outcome variable, we prepared adjusted regression models for four subpopulations stratified by sex and high versus lower fatness. For HOMA-IR, R2 attributed to BMIz or WHtR was 19%-28% among high-fatness and 8%-13% among lower-fatness students. R2 for lipid variables was 4%-9% among high-fatness and 2%-7% among lower-fatness students. In the lower-fatness subpopulations, the standardized coefficients for total cholesterol/HDL cholesterol and triglycerides tended to be weaker for BMIz (0.13-0.20) than for WHtR (0.17-0.28). Among high-fatness students, BMIz and WHtR correlated with blood pressures for Hispanics and whites, but not black boys (systolic) or girls (systolic and diastolic). In 11-12 year olds, assessments by WHtR can provide cardiometabolic risk estimates similar to conventional BMIz without requiring reference to a normative growth chart
Combining Asian and European genome-wide association studies of colorectal cancer improves risk prediction across racial and ethnic populations
Polygenic risk scores (PRS) have great potential to guide precision colorectal cancer (CRC) prevention by identifying those at higher risk to undertake targeted screening. However, current PRS using European ancestry data have sub-optimal performance in non-European ancestry populations, limiting their utility among these populations. Towards addressing this deficiency, we expand PRS development for CRC by incorporating Asian ancestry data (21,731 cases; 47,444 controls) into European ancestry training datasets (78,473 cases; 107,143 controls). The AUC estimates (95% CI) of PRS are 0.63(0.62-0.64), 0.59(0.57-0.61), 0.62(0.60-0.63), and 0.65(0.63-0.66) in independent datasets including 1681-3651 cases and 8696-115,105 controls of Asian, Black/African American, Latinx/Hispanic, and non-Hispanic White, respectively. They are significantly better than the European-centric PRS in all four major US racial and ethnic groups (p-values < 0.05). Further inclusion of non-European ancestry populations, especially Black/African American and Latinx/Hispanic, is needed to improve the risk prediction and enhance equity in applying PRS in clinical practice