27 research outputs found

    Yaw Induction by Mass Asymmetry Theory

    No full text

    Addressing the Challenges of Inclusion of Children with Disabilities

    No full text
    Reform of regular and special education continues to forge ahead although little is known about outcomes for children with disabilities in schools engaged in restructuring. While debates about the inclusion of these students continue, little consensus exists on various aspects of the movement. This article offers a discussion of collaborations between a University and local school districts in its catchment area. It begins with a discussion of challenges associated with inclusive programming including research, philosophical, political, logistical, and policy issues. The authors end with a description of an inclusion program and research project that evolved from the University/school district collaborations

    The formation and chronology of the PAT 91501 impact-melt L chondrite with vesicle–metal–sulfide assemblages

    Get PDF
    The L chondrite Patuxent Range (PAT) 91501 is an 8.5-kg unshocked, homogeneous, igneous-textured impact melt that cooled slowly compared to other meteoritic impact melts in a crater floor melt sheet or sub-crater dike [Mittlefehldt D. W. and Lindstrom M. M. (2001) Petrology and geochemistry of Patuxent Range 91501 and Lewis Cliff 88663. Meteoritics Planet. Sci. 36, 439–457]. We conducted mineralogical and tomographic studies of previously unstudied mm- to cm-sized metal–sulfide–vesicle assemblages and chronologic studies of the silicate host. Metal–sulfide clasts constitute about 1 vol.%, comprise zoned taenite, troilite, and pentlandite, and exhibit a consistent orientation between metal and sulfide and of metal–sulfide contacts. Vesicles make up 2 vol.% and exhibit a similar orientation of long axes. 39Ar–40Ar measurements probably date the time of impact at 4.461 ± 0.008 Gyr B.P. Cosmogenic noble gases and 10Be and 26Al activities suggest a pre-atmospheric radius of 40–60 cm and a cosmic ray exposure age of 25–29 Myr, similar to ages of a cluster of L chondrites. PAT 91501 dates the oldest known impact on the L chondrite parent body. The dominant vesicle-forming gas was S2 (15–20 ppm), which formed in equilibrium with impact-melted sulfides. The meteorite formed in an impact melt dike beneath a crater, as did other impact melted L chondrites, such as Chico. Cooling and solidification occurred over 2 h. During this time, 90% of metal and sulfide segregated from the local melt. Remaining metal and sulfide grains oriented themselves in the local gravitational field, a feature nearly unique among meteorites. Many of these metal–sulfide grains adhered to vesicles to form aggregates that may have been close to neutrally buoyant. These aggregates would have been carried upward with the residual melt, inhibiting further buoyancy-driven segregation. Although similar processes operated individually in other chondritic impact melts, their interaction produced the unique assemblage observed in PAT 91501
    corecore