14 research outputs found

    Enzyme extraction of cupuassu (Theobroma grandiflorum S.) fat sedes

    Get PDF
    Enzyme-assisted extraction is considered an environmentally friendly technique. Cellulase, pectinase and protease were tested for cupuassu seeds fat extraction. The best fat efficiency (81.66%) was obtained for the solute:solvent 1:5 (m:w), orbital shaker at 120 rpm, 60 °C, for 8 hours and enzyme concentrations (cellulase, pectinase and protease) of 1.0%. The fat was characterized for physicochemical properties, fatty acid profile, phenolic compounds, antioxidant activities and oxidative stability. The fat showed good thermal stability (14.26 h) and high contents of monounsaturated (42.42%) and saturated (43.47%) fatty acids with higher concentrations of oleic and stearic acids, respectively, and a high content of phenolic compounds (141.84 µg EAG·g-1) in the fat, and in the aqueous extract (926.47 µg EAG·g-1). The results indicated that the cupuassu seed fat obtained by enzymatic extraction showed superior properties to cupuassu fat obtained by cold pressing, in addition to generating an aqueous fraction which is rich in bioactive compounds that can be used as ingredients in the food and pharmaceutical sectors

    Perfil de ácidos grasos y comportamiento reológico de aceite y grasa de semillas de achiote (Bixa orellana), y de cacao blanco (Theobroma grandiflorum) y sus mezclas

    Get PDF
    Annatto seed oil (ASO) and cupuassu seed fat (CSF) were combined at the ratios: 30:70, 50:50, and 70:30 (% w/w). Their fatty acid profile, nutritional quality, FTIR (Fourier Transform Infrared) spectra, and rheological behavior were evaluated. ASO increased the content of polyunsaturated fatty acids in the blends; whereas CSF conferred higher contents of monounsaturated fatty acids. The blends exhibited low atherogenicity and thrombogenicity indices, suggesting nutritional advantages. The Newtonian fluid behavior and FTIR results suggested that mixing ASO and CSF at different proportions did not affect the functional groups. ASO showed an activation energy value which indicated that this fat viscosity was more sensitive to temperature changes. The Newtonian model proved to be suitable to describe the behavior of samples, according to statistical fit parameters R2, χ2, and RSS. The resulting blends presented improved physicochemical properties and nutritional attributes, indicating their feasibility for the development of new products.Se combinaron aceite de semilla de achiote (ASO) y grasa de semilla de cacao blanco (CSF) en las proporciones: 30:70, 50:50 y 70:30 (% p/p), respectivamente. Se evaluó su perfil de ácidos grasos, calidad nutricional, espectros FTIR (Fourier Transform Infrared) y comportamiento reológico. ASO incrementó el contenido de ácidos grasos poliinsaturados en las mezclas, mientras que CSF confirió mayores contenidos de ácidos grasos monoinsaturados. Las mezclas exhibieron bajos índices de aterogenicidad y trombogenicidad, lo que sugiere ventajas nutricionales. El comportamiento del fluido newtoniano y los resultados de FTIR sugirieron que mezclar ASO y CSF en diferentes proporciones no afectó a los grupos funcionales. ASO mostró un valor de energía de activación que indicó que la viscosidad de esta grasa era más sensible a los cambios de temperatura. El modelo newtoniano demostró ser adecuado para describir el comportamiento de las muestras, según los parámetros de ajuste estadístico R2, χ2 y RSS. Las mezclas resultantes presentaron propiedades fisicoquímicas y atributos nutricionales mejorados, lo que indica su viabilidad para el desarrollo de nuevos productos

    Antimicrobial Activity Of Ethanol Extract From Leaves Of Casearia Sylvestris

    No full text
    Casearia sylvestris Sw., also known as "guaçatonga," is a medicinal plant with broad use in South America. Among the popular applications attributed to this plant are anti-inflammatory, anticancer, antimicrobial, and antiulcer activities. Despite the broad popular use of this plant as a phytopharmaceutical agent, there are few studies about the antimicrobial potential of guaçatonga. In this work, we have studied the antimicrobial potential of an ethanol extract obtained from C. sylvestris leaves against three yeasts, two filamentous fungus, six Gram-negative bacteria, and two Gram-positive bacteria. Through two chromatographic steps using a Sephadex LH-20 column and RP-HPLC, we isolated and characterized two derived compounds of gallic acid: isobutyl gallate-3,5-dimethyl ether (IGDE) and methyl gallate-3,5-dimethyl ether (MGDE). Both compounds showed antimicrobial activity. IGDE was much more efficient than MGDE in inhibiting yeasts (Candida albicans, Candida tropicalis, and Candida guilliermondii) and Gram-positive bacteria (Enterococcus faecalis and Staphylococcus aureus). This fact is probably associated with the higher hydrophobicity degree of IDGE compared with MGDE. © 2008 Informa Healthcare USA, Inc.465347351Alves, T.M.A., Biological screening of Brazilian medicinal plants (2000) Memorial do Instituto Oswaldo Cruz, 95, pp. 367-373Barry, A., Procedure for testing antimicrobial agents in agar media: Theoretical considerations (1986) Antibiotics in Laboratory Medicine, pp. 1-26. , Lorian V, ed, 2nd ed. Baltimore. Williams & Wilkins, ppBasile, A.C., Sertie, J.A., Panizza, S., Oshiro, T.T., Azzolini, C.A., Pharmacological assay of Casearia sylvestris. 1: Preventive anti-ulcer activity and toxicity of the leaf crude extract (1990) J Ethnopharmacol, 30, pp. 185-197Beutler, J.A., Mccall, K.L., Herbert, K., Herald, D.L., Rettit, G.R., Johnson, T., Shoemaker, R.H., Boyd, M.R., Novel cytotoxic diterpenes from Casearia arborea (2000) J Nat Prod, 63, pp. 657-659Chanwitheesuk, A., Teerawutgulrag, A., Kilburn, J.D., Rakariyatham, N., Antimicrobial gallic acid from Caesalpinia mimosoides Lamk (2007) Food Chem, 100, pp. 1044-1048Chiappeta, A.D., Higher plants with biological activity plants of Pernambuco (1983) Rev Inst Antibiot, 21, pp. 43-50De Mesquita, M.L., Desrivot, J., Bories, C., Fournet, A., De Paula, J.E., Grellier, P., Espindola, L.S., Antileishmanial and trypanocidal activity of Brazilian Cerrado plants (2005) Memorias do Instituto Oswaldo Cruz, 100, pp. 783-787Esteves, I., Souza, I.R., Rodrigues, M., Cardoso, L.G.V., Santos, L.S., Sertie, J.A.A., Perazzo, F.F., Carvalho, J.C.T., Gastric antiulcer and antiinflammatory activities of the essential oil from Casearia sylvestris Sw (2005) J Ethnopharmacol, 101, pp. 191-196Hoffman, H.L., Pfaller, M.A., In vitro antifungal susceptibility testing (2001) Pharmacotherapy, 21, pp. 111-123Kubo, I., Xiao, P., Nihei, K.-I., Fujita, K.-I., Yamagiwa, Y., Kamikawa, T., Molecular design of antifungal agents (2002) J Agric Food Chem, 50, pp. 3992-3998(2002) Plantas Medicinais no Brasil: Nativas e exóticas, pp. 23-24. , Lorenzi H, Matos FJA, eds, Nova Odessa, Inst. Plantarum Est. Flora LTDA, ppMaistro, E.L., Carvalho, J.C.T., Mantovani, M.S., Evaluation of the genotoxic potential of the Casearia sylvestris extract on HTC and V79 cells by the comet assay (2004) Toxicol Vitro, 18, pp. 337-342Mans, D.R.A., Da Rocha, A.B., Schwartsmann, G., Anti-cancer drug discovery and development in Brazil: Targeted plant collection as a rational strategy to acquire candidate anticancer compounds (2000) Oncologist 2000, pp. 185-198Menezes, P.R., Schwarz, E.A., Santos, C.A.M., In vitro antioxidant activity of species collected in Paraná (2004) Fitoterapia, 75, pp. 398-400Morita, H., Nakayama, M., Kojima, H., Takeya, K., Itokawa, H., Schenkel, E.P., Motidom, M., Structure and cytotoxic activity relationship of casearins, new clerodane diterpenes from Casearia sylvestris SW (1991) Chem Pharm Bull, 39, pp. 693-697Mors, W.B., Nascimento, M.C., Pereira, B.M.R., Pereira, N.A., Plant natural products active against snake bite - the molecular approach (2000) Phytochemistry, 55, pp. 627-642Mosaddik, M.A., Banbury, L., Foster, P., Booth, R., Markham, J., Leach, D., Waterman, P.G., Screening of some Australian Flacourtiaceae species for in vitro antioxidante, cytotoxic and antimicrobial activity (2004) Phytomedicine, 11, pp. 461-466Approved standard M7-45. Standard methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, Villanova, PA (1990) NCCLS, pp. 143-152. , NCCLS National Commitee for Clinical Laboratory StandardsRaslan, D.S., Jamal, C.M., Duarte, D.S., Borges, M.H., De Lima, M.E., Anti-PLA2 action test of Casearia sylvestris Sw (2002) Boll Chim Farm, 141, pp. 457-460Rodrigues, A.M.S., De Paula, J.E., Degallier, N., Molez, J.F., Espi'ndola, L.S., Larvicidal activity of some Cerrado plant extracts against Aedes aegypti (2006) J Am Mosq Cont Ass, 22, pp. 314-317Shibata, H., Kondo, K., Katsuyama, R., Kawazoe, K., Sato, Y., Murakami, K., Takaishi, Y., Higuti, T., Alkyl gallates, intensifiers of β-lactam susceptibility in methicillin-resistant Staphylococcus aureus (2005) Antimicrob Agents Chemother, 49, pp. 549-555Simões CMO, Shenkel EP, Gosman G, Mello JCP, Mentz LA, Petrovick PR, Eds. (2001): Farmacognosia da planta ao medicamento. ed. Florianópolis, UFRGS/UFSC, pp. 14-39Weniger, B., Theory and instrumentation involved with extraction, control, quality insurance and registration of natural products (1991) First International Advanced Course on Technology and Control of Drugs, pp. 31-40. , Italy, Perugia, p

    Pharmacological Study Of Edema And Myonecrosis In Mice Induced By Venom Of The Bushmaster Snake (lachesis Muta Muta) And Its Basic Asp49 Phospholipase A2 (lmtx-i)

    No full text
    Previous in vitro studies show that Lachesis muta venom and its purified Asp49 phospholipase A2, named as LmTX-I, display potent neurotoxic and myotoxic activities. Here, an in vivo study was conducted to investigate some pharmacological effects of the venom or its LmTX-I toxin, after intra-muscular injection in tibialis anterior (TA) and following subplantar injection in hind paws of mice. Findings showed that LmTX-I increased plasma creatine kinase activity and produced strong myonecrosis and inflammatory reactions in TA muscle. In addition to these effects, the venom also induced intense local hemorrhage. Pre-treatment of the venom with EDTA (5 mM) significantly inhibited the edema and hemorrhage. Histological examination showed that L. muta venom caused inner dermal layer thickening in the pad hind paw. In addition, there was marked inflammatory cell infiltration, particularly of neutrophils, and hemorrhage. LmTX-I also demonstrated edema-forming activity, which was inhibited by pretreatment with indomethacin. © 2008 Springer Science+Business Media, LLC.276384391Barros, S.F., Friedlanskaia, I., Petricevich, B.L., Kipnis, T., (1998) Mediators Inflamm, 7, pp. 339-346Calhoun, W., Yu, J., Sung, A., Chau, T.T., Marshall, L.A., Weichman, B.M., Carlson, R.P., (1989) Agents Actions, 27, pp. 418-421Chaves, F., León, G., Alvarado, V.H., Gutiérrez, J.M., (1998) Toxicon, 36, pp. 1861-1869Chaves, F., Teixeira, C.F., Gutiérrez, J.M., (2005) Toxicon, 45, pp. 171-178Chioato, L., De Oliveira, A.H., Ruller, R., Sa, J.M., Ward, R.J., (2002) Biochem J, 366, pp. 971-976Campbell, J.A., Lamar, W.W., Greene, H., (2003) The Venomous Reptiles of the Western Hemisphere, , Cornell University New YorkCirino, G., Peers, S.H., Wallace, J.L., Flower, R.J., (1989) Eur J Pharmacol, 166, pp. 505-510Damico, D.C.S., Bueno, L.G.F., Rodrigues-Simioni, L., Marangoni, S., Cruz-Höfling, M.A., Novello, J.C., (2005) Toxicon, 46, pp. 222-229Damico, D.C.S., Lilla, S., De Nucci, G., Ponce-Soto, L.A., Winck, F.V., Novello, J.C., Marangoni, S., (2005) Biochim Biophys Acta, 1726, pp. 75-86Damico, D.C.S., Bueno, L.G.F., Rodrigues-Simioni, L., Marangoni, S., Cruz-Höfling, M.A., Novello, J.C., (2006) Toxicon, 47, pp. 759-765Dennis, E.A., (1994) J Biol Chem, 269, pp. 13057-13060Farsky, S.H.P., Walber, J., Costa-Cruz, M., Cury, Y., Teixeira, C.F.P., (1997) Toxicon, 35, pp. 185-193Francis, B., Gutiérrez, J.M., Lomonte, B., Kaiser, I.I., (1991) Biophysics, 284, pp. 1587-1594Fuly, A.L., De Miranda, A.L.P., Zingali, R.B., Guimarães, J.A., (2002) Biochem Pharmacol, 63, pp. 1589-1597Gutiérrez, J.M., Lomonte, B., (1995) Toxicon, 33, pp. 1405-1424Gutiérrez, J.M., Ownby, C.L., (2003) Toxicon, 42, pp. 915-931Gutiérrez, J.M., Rojas, G., Lomonte, B., Gené, J.A., Cerdas, L., (1986) Comp Biochem Physiol, 85, pp. 171-175Gutiérrez, J.M., Rucavado, A., (2000) Biochimie, 82, pp. 841-845Harris, J.B., Cullen, M.J., (1990) Electron Microsc Rev, 3, pp. 183-211Kaiser, I.I., Gutiérrez, J.M., Plummer, D., Aird, S.D., Odell, G.V., (1990) Arch Biochem Biophys, 278, pp. 319-325Kini, R.M., (2003) Toxicon, 42, pp. 827-840Lomonte, B., Moreno, E., Tarkowski, A., Hanson, L.A., MacCarana, M., (1994) J Biol Chem, 269, pp. 29867-29873Maraganore, J.M., Heinrikson, R.L., (1986) J Biol Chem, 261, pp. 4797-4804Murakami, M., Kambe, T., Shimbara, S., Yamamoto, S., Kuwata, H., Kudo, I., (1999) J Biol Chem, 274, pp. 29927-29936Neto, H.S., Marques, M.J., (2005) Toxicon, 46, pp. 814-819Nuñez, C.E., Angulo, Y., Lomote, B., (2001) Toxicon, 39, pp. 1587-1594Queiroz, L.S., Marques, M.J., Neto, H.S., (2002) Toxicon, 40, pp. 1483-1486Ran, Y., Zheng, S., Tu, A.T., (1988) Chem Res Toxicol, 1, pp. 337-342Rojas, G., Gutiérrez, J.M., Gené, J.A., Gómez, M., Cerdas, L., (1987) Rev Biol Trop, 35, pp. 59-67Rosenthal, R., Meier, J., Koelz, A., Muller, C., Wegmann, W., Vogelbach, P., (2002) Toxicon, 40, pp. 217-220Sánchez, E.F., Magalhães, A., Diniz, C.R., (1987) Toxicon, 25, pp. 611-619Sánchez, E.F., Magalhães, A., Mandelbaum, F.R., Diniz, C.R., (1991) Biochim Biophys Acta, 1074, pp. 347-356Sánchez, E.F., Costa, M.I.E., Chavez-Olórtegui, C., Assakura, M.T., Mandelbaum, F.R., Diniz, C.R., (1995) Toxicon, 33, pp. 1653-1667Sánchez, E.F., Cordeiro, M.N., De Oliveira, E.B., Juliano, L., Prado, E.S., Diniz, C.R., (1995) Toxicon, 33, pp. 1061-1069Araújo De Selistre, H.S., White, S.P., Ownby, C.L., (1996) Arch Biochem Biophys, 326, pp. 21-30Teixeira, C.F.P., Landucci, E.C.T., Antunes, E., Chacur, M., Cury, Y., (2003) Toxicon, 42, pp. 947-962Vishwanath, B.S., Kini, R.M., Gowda, T.V., (1987) Toxicon, 25, pp. 501-515Vishwanath, B.S., Fawzy, A.A., Franson, R.C., (1988) Inflammation, 12, pp. 549-561Wang, J.P., Teng, C.M., (1990) Eur J Pharmacol, 190, pp. 347-35

    Biological And Biochemical Characterization Of New Basic Phospholipase A2 Bmtx-i Isolated From Bothrops Moojeni Snake Venom

    No full text
    BmTX-I, an Asp49 phospholipase A2, was purified from Bothrops moojeni venom after only one chromatographic step using reverse-phase HPLC on μ-Bondapak C-18 column. A molecular mass of 14238.71 Da was determined by MALDI-TOF mass spectrometry. Amino acid analysis showed a high content of hydrophobic and basic amino acids as well as 14 half-cysteine residues. The BmTX-I PLA2 had a sequence of 121 residues of amino acids: DLWQFNKMIK KEVGKLPFPF YGAYGCYCGW GGRGEKPKDG TDRCCFVHDC CYKKLTGCPK WDDRYSYSWK DITIVCGEDL PCEEICECDR AAAVCFYENL GTYNKKYMKH LKPCKKADYP C and pI value 7.84, and showed a high degree of homology with basic Asp49 PLA2 myotoxins from other Bothrops venoms. BmTX-I presented PLA2 activity in the presence of a synthetic substrate and showed a minimum sigmoidal behavior, reaching its maximal activity at pH 8.0 and 35-45 °C. Maximum PLA2 activity required Ca2+ and in the presence of Mg2+, Cd2+ and Mn2+ it was reduced in presence or absence of Ca2+. Crotapotin from Crotalus durissus colillineatus rattlesnake venom has significantly inhibited (P<0.05) the enzymatic activity of BmTX-I. In vitro, the whole venom and BmTX-I caused a blockade of the neuromuscular transmission in young chick biventer cervicis preparations in a similar way to other bothrops species. In mice, BmTX-I and the whole venom-induced myonecrosis and a systemic interleukin-6 response upon intramuscular injection. Edema-forming activity was also analyzed through injection of the venom and the purified BmTX-I into the subplantar region of the right footpad. Since BmTX-I exert a strong proinflammatory effect; the enzymatic phospholipids hydrolysis might be relevant for these phenomena. © 2008 Elsevier Ltd. All rights reserved.51815091519Andrião-Escarso, S.H., Soares, A.M., Rodrigues, V.M., Ângulo, Y., Diaz, C., Lomonte, B., Gutierrez, J.M., Giglio, J.R., Myotoxic phospholipases A2 in Bothrops snake venoms: effect of chemical modifications on the enzymatic and pharmacological properties of bothropstoxins from Bothrops jararacussu (2000) Biochimie, 82, pp. 755-763Arni, R.K., Ward, R.J., Phospholipase A2-a structural review (1996) Toxicon, 34, pp. 827-841Balsinde, J., Balboa, M.A., Insel, P.A., Dennis, E.A., Regulation and inhibition of phospholipase A2 (1999) Annu. Rev. Pharmacol. Toxicol., 39, pp. 175-189Beghini, D.G., Toyama, M.H., Hyslop, S., Sodek, L.C., Novello, J.C., Marangoni, S., Enzymatic characterization of a novel phospholipase A2 from Crotalus durissus cascavella rattlesnake (maracambóia) venom (2000) J. Protein Chem., 19, pp. 679-684Bonfim, V.L., Toyama, M.H., Novello, J.C., Hyslop, S., Oliveira, C.R.B., Rodrigues-Simioni, L., Marangoni, S., Isolation and enzymatic characterization of a basic phospholipase A2 from Bothrops jararacussu snake venom (2001) J. Protein Chem., 20, pp. 239-245Bonfim, V.L., Ponce-Soto, L.A., Novello, J.C., Marangoni, S., Structural and functional properties of Cr 5, a new Lys49 phospholipase A2 homologue isolated from the venom of the snake Calloselasma rhodostoma (2006) Protein J., 25, pp. 492-505Breithaupt, H., Enzymatic characteristics of Crotalus phospholipase A2 and the crotoxin complex (1976) Toxicon, 14, pp. 221-233Carneiro, A.S., Ribeiro, O.G., De Franco, M., Cabrera, A.H.K., Vorraro, F., Siqueira, M., Ibãnez, O.M., Starobinas, N., Local inflammatory reaction induced by Bothrops jararaca venom differs in mice selected for acute inflammatory response (2002) Toxicon, 40, pp. 1571-1579Chacur, M., Picolo, G., Gutiérrez, J.M., Teixeira, C.F.P., Cury, Y., Pharmacological modulation of hyperalgesia induced by Bothrops asper (terciopelo) snake venom (2001) Toxicon, 39, pp. 1173-1181Chaves, F., León, G., Alvarado, V.H., Gutiérrez, J.M., Pharmacological modulation of edema induced by Lys-49 and Asp-49 myotoxic phospholipases A2 isolated from the venom of the snake Bothrops asper (terciopelo) (1998) Toxicon, 36, pp. 1861-1869Chijiwa, T., Hamai, S., Tsubouchi, S., Ogawa, T., Deshimaru, M., Oda-Ueda, N., Hattori, S., Ohno, M., Interisland mutation of a novel phospholipase A2 from Trimeresurus flavoviridis venom and evolution of Crotalinae group II phospholipases A2 (2003) J. Mol. Evol., 57, pp. 546-554Cogo, J.C., Prado-Franceschi, J., Cruz-Hofling, M.A., Corrado, A.P., Rodrigues-Simioni, L., Effect of Bothrops insularis venom on the mouse and chick nerve-muscle preparation (1993) Toxicon, 10, pp. 1237-1247Condrea, E., Yang, C.C., Rosenberg, P., Lack of correlation between anticoagulant activity and phospholipid hydrolysis by snake venom phospholipases A2 (1981) Thromb. Haemost., 45, pp. 82-85Da Silva, S.L., Calgarotto, A.K., Maso, V., Damico, D.C.S., Baldasso, P.A., Veber, C.L., Villar, J.A.F.P., Oliveira, A.R.M., Oliveira, K.M.T., Comar Jr., M., Marangoni, S., 2008. Molecular modeling and inhibition of phospholipase A2 by polyhydroxy phenolic compounds. Eur. J. Med. Chem., in press, doi:10.1016/j.ejmech.2008.02.043Damico, D.C., Bueno, L.G., Rodrigues-Simioni, L., Marangoni, S., da Cruz-Höfling, M.A., Novello, J.C., Functional characterization of a basic D49 phospholipase A2 (LmTX-I) from the venom of the snake Lachesis muta muta (bushmaster) (2006) Toxicon, 47, pp. 759-765Damico, D.C.S., Bueno, L.G.F., Rodrigues-Simioni, L., Marangoni, S., Cruz-Hofling, M.A., Novello, J.C., Neurotoxic and myotoxic actions from Lachesis muta muta (surucucu) whole venom on the mouse and chick nerve-muscle preparations (2005) Toxicon, 46, pp. 222-229Dennis, E.A., Diversity of groups types, regulation and function of phospholipases A2 (1994) J. Biol. Chem., 269, pp. 13057-13060Díaz, C., Gutiérrez, J.M., Lomonte, B., Isolation and characterization of basic myotoxic phospholipases A2 from Bothrops godmani (Godman's pit viper) snake venom (1992) Arch. Biochem. Biophys., 298, pp. 135-142Faria, L., Antunes, E., Bon, C., Lôbo de Araújo, A., Pharmacological characterization of the rat paw edema induced by Bothrops lanceolatus (fer de lance) venom (2001) Toxicon, 39, pp. 825-830Gutierrez, JM., Lomonte, B., Phospholipase A2 myotoxins from Bothrops snake venoms (1995) Toxicon, 33, pp. 1405-1424Gutiérrez, J.M., Lomonte, B., Phospholipase A2 myotoxins from Bothrops snake venoms (1997) Venom Phospholipase A2 Enzymes: Structure, Function and Mechanism, pp. 321-352. , Kini R.M. (Ed), Wiley, Chichester, EnglandGutiérrez, J.M., Ownby, C.L., Skeletal muscle degeneration induced by venom phospholipases A2: insights into the mechanisms of local and systemic myotoxicity (2003) Toxicon, 42, pp. 915-931Gutiérrez, J.M., Rojas, G., Lomonte, B., Gené, J.A., Cerdas, L., Comparative study of the edema-forming activity of Costa Rican snake venoms and its neutralization by a polyvalent antivenom (1986) Comp. Biochem. Physiol., 85, pp. 171-175Gutiérrez, J.M., Ponce-Soto, L.A., Marangoni, S., Lomonte, B., Systemic and local myotoxicity induced by snake venom group II phospholipases A2: comparison between crotoxin, crotoxin B and a Lys49 PLA2 homologue (2008) Toxicon, 51, pp. 80-92Heinrikson, R.L., Meredith, S.C., Amino acid analysis by reverse phase high-performance liquid chromatography: pre-column derivatization with phenylthiocyanate (1984) Anal. Biochem., 13, pp. 65-72Holzer, M.E., Mackessy, S.P., An aqueous endpoint assay of snake venom phospholipase A2 (1996) Toxicon, 34, pp. 1149-1155Kanashiro, M.M., Escocard, R.C.M., Petretski, J.H., Prates, M.V., Alves, E.W., Machado, O.L.T., Dias da Silva, W., Kipnis, T.L., Biochemical and biological properties of phospholipases A2 from Bothrops atrox snake venom (2002) Biochem. Pharmacol., 64, pp. 1179-1186Kini, R.M., Excitement ahead: structure, function and mechanism of snake venom phospholipase A2 enzymes (2003) Toxicon, 42, pp. 827-840Kini, R.M., Phospholipase A2 a complex multifunctional protein puzzles (1997) Enzymes: Structure, Function and Mechanism, pp. 1-28. , Kini R.M. (Ed), Wiley, Chichester, EnglandKini, RM., Evans, H.J., Structure-function relationships of phospholipases. The anticoagulant region of phospholipases A2 (1987) J. Biol. Chem., 262, pp. 14402-14407Kouyoumdjian, J.A., Polizeli, C., Lobo, S.M.A., Guimarães, S.M., Acidentes ofídicos causados por Bothrops moojeni na região de São José do Rio Preto-SP (1990) Arq. Brasil. Med., 64, pp. 167-171Landucci, E.C.T., de Castro, R.C., Pereira, M.F., Cintra, A.C.O., Giglio, J.R., Marangoni, S., Oliveira, B., de Nucci, G., Mast cell degranulation induced by two phospholipase A2 homologues: dissociation between enzymatic and biological activities (1998) Eur. J. Pharmacol., 343, pp. 257-263Landucci, E.C.T., Toyama, M.H., Marangoni, S., Benedito, O., Giuseppe, C., Antunes, E., de Nucci, G., Effect of crotapotin and heparin on the rat paw oedema induced by different secretory phospholipases A2 (2000) Toxicon, 38, pp. 199-208Lee, W.H., da Silva Giotto, M.T., Marangoni, S., Toyama, M.H., Polikarpov, I., Garratt, R.C., Structural basis for low catalytic activity in Lys49 phospholipases A2-a hypothesis: the crystal structure of piratoxin II complexed to fatty acid (2001) Biochemistry, 40, pp. 28-36Lomonte, B., Gutiérrez, J.M., Furtado, M.F., Otero, R., Rosso, J.P., Vargas, O., Carmona, E., Rovira, M.E., Isolation of basic myotoxins from Bothrops moojeni and Bothrops atrox snake venoms (1990) Toxicon, 28, pp. 1137-1146Lomonte, B., Tarkowski, A., Hanson, L.A., Host response to Bothrops asper snake venom. Analysis of edema formation, inflammatory cells, and cytokine release in a mouse model (1993) Inflammation, 17, pp. 93-105Mebs, D., Ownby, C.L., Myotoxic components of snake venoms: their biochemical and biological activities (1990) Pharmacol. Ther., 48, pp. 223-236Moura-da-Silva, A.M., Paine, M.J., Diniz, M.R., Theakston, R.D., Crampton, J.M., The molecular cloning of a phospholipase A2 from Bothrops jararacussu snake venom: evolution of venom group II phospholipase A2's may imply gene duplications (1995) J. Mol. Evol., 41, pp. 174-179Nevalainen, T.J., Haapamaki, M.M., Gronroos, J.M., Roles of secretory phospholipases A2 in inflammatory diseases and trauma (2000) Biochim. Biophys. Acta, 1488, pp. 83-90Pan, H., Ou-Yang, L.L., Yang, G.Z., Zhou, Y.C., Wu, X.F., Cloning of the BPLA(2) Gene from Agkistrodon halys Pallas (1996) Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao, 28, pp. 579-582Pereira, M.E., Novello, J.C., Cintra, A.C.O., Giglio, J.R., Landucci, E.T., Oliveira, B., Marangoni, S., The amino acid sequence of Bothropstoxin-II, a Asp49 myotoxin from Bothrops jararacussu (jarracuçu) venom with low phospholipase A2 activity (1998) J. Protein Chem., 17, pp. 381-386Ponce-Soto, L.A., Toyama, M.H., Hyslop, S., Novello, J.C., Marangoni, S., Isolation and preliminary enzymatic characterization of a novel PLA2 from Crotalus durissus collilineatus venom (2002) J. Protein Chem., 21, pp. 131-136Ponce-Soto, L.A., Bonfim, V.L., Rodrigues-Simioni, L., Novello, J.C., Marangoni, S., Determination of primary structure of two isoforms 6-1 and 6-2 PLA2 D49 from Bothrops jararacussu snake venom and neurotoxic characterization using in vitro neuromuscular preparation (2006) Protein J., 25, pp. 147-155Ponce-Soto, L.A., Martins, D., Novello, J.C., Marangoni, S., Structural and biological characterization of two crotamine isoforms IV-2 and IV-3 isolated from the Crotalus durissus cumanensis venom (2007) Protein J., 26, pp. 533-540Ponce-Soto, L.A., Lomonte, B., Rodrigues-Simioni, L., Novello, J.C., Marangoni, S., Biological and structural characterization of crotoxin and new isoform of crotoxin B PLA(2) (F6a) from Crotalus durissus collilineatus snake venom (2007) Protein J., 26, pp. 221-230Rigden, D.J., Hwa, L.W., Marangoni, S., Toyama, M.H., Polikarpov, I., The structure of the D49 phospholipase A2 piratoxin III from Bothrops pirajai reveals unprecedented structural displacement of the calcium-binding loop: possible relationship to cooperative substrate binding (2003) Acta Crystallogr. D Biol. Crystallogr., 59, pp. 255-262Rosenfeld, G., Symptomatology, pathology, and treatment of snake bites in South America (1971) Venomous Animals and their Venoms, 2, pp. 345-384. , Bucherl W., and Buckley E.E. (Eds), Academic Press, New YorkSchagger, H.A., Von Jagow, G., Comassie blue-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for direct visualization of polypeptides during electrophoresis (1987) Anal. Biochem., 166, pp. 368-379Serrano, S.M.T., Shannon, J.D., Wang, D., Camargo, A.C.M., Fox, J.W., A multifaceted analysis of viperid snake venoms by two-dimensional gel electrophoresis: an approach to understanding venom proteomics (2005) Proteomics, 5, pp. 501-510Six, D.A., Dennis, E.A., The expanding superfamily of phospholipase A2 enzymes: classification and characterization (2000) Biochim. Biophys. Acta, 1488, pp. 1-19Soares, A.M., Rodrigues, V.M., Homsi-Brandeburgo, M.I., Toyama, M.H., Lombardi, F.R., Arni, R.K., Giglio, J.R., A rapid procedure for the isolation of the Lys-49 myotoxin II from Bothrops moojeni (caissaca) venom: biochemical characterization, crystallization, myotoxic and edematogenic activity (1998) Toxicon, 36, pp. 503-514Soares, A.M., Andrião-Escarso, S.H., Angulo, Y., Lomonte, B., Gutiérrez, J.M., Marangoni, S., Toyama, M.H., Giglio, J.R., Structural and functional characterization of myotoxin I, a Lys49 phospholipase A2 homologue from Bothrops moojeni (Caissaca) snake venom (2000) Arch. Biochem. Biophys., 373, pp. 7-15Soares, A.M., Guerra-Sá, R., Borja-Oliveira, C., Rodrigues, V., Rodrigues-Simioni, L., Rodrigues, V., Fontes, M.R.M., Giglio, J.R., Structural and functional characterization of BnSP-7, a Lys49 myotoxic phospholipase A(2) homologue from Bothrops neuwiedi pauloensis venom (2000) Arch. Biochem. Biophys., 378, pp. 201-209Toyama, M.H., Costa, P.D., Novello, J.C., de Oliveira, B., Giglio, J.R., da Cruz Hofling, M.A., Marangoni, S., Purification and amino acid sequence of MP-III 4R D49 phospholipase A2 from Bothrops pirajai snake venom, a toxin with moderate PLA2 and anticoagulant activities and high myotoxic activity (1999) J. Protein Chem., 18, pp. 371-378Valentin, E., Lambeau, G., Increasing molecular diversity of secreted phospholipases A2 and their receptors and binding proteins (2000) Biochim. Biophys. Acta, 1488, pp. 59-70Wang, Y.M., Wang, J.H., Tsai, I.H., Molecular cloning and deduced primary structures of acidic and basic phospholipases A2 from the venom of Deinagkistrodon acutus (1996) Toxicon, 34, pp. 1191-119

    CO2 Adsorption on Ionic Liquid—Modified Cu-BTC: Experimental and Simulation Study

    No full text
    We analyzed the adsorption of CO2 in a Cu-BTC metal-organic framework (MOF) impregnated with ionic liquids (ILs) experimentally and by molecular simulation using the Monte Carlo method. The ILs [bmim][PF6] and [bmim][Tf2N] were impregnated in concentrations of 1, 5 and 10 wt%. Monte Carlo computations showed maximum impregnation load of approximately 30 wt% and improved CO2 adsorption up to 2 bar for all the concentrations tested. Experimentally, the impregnated material was carefully characterized and CO2 isotherms were measured. High concentrations of IL solution (10 wt%) had a pronounced detrimental effect on the textural properties of Cu-BTC, whereas for low concentration (5 wt%), no improvement in CO2 adsorption was observed. Based on the experimental and simulated data, the suitability of Cu-BTC as a target MOF for IL impregnation was examined.This work was supported by the Brazilian research agencies, CNPq and CAPES. E.O. Jardim thanks the CNPq (Brazil) for her grant

    Molecular Modeling And Inhibition Of Phospholipase A2 By Polyhydroxy Phenolic Compounds

    No full text
    Phospholipases A2 are enzymes responsible for the hydrolysis of membrane phospholipids that release arachidonic acid, which serves as substrate for pro-inflammatory mediators, such as prostaglandins and leucotriens. The design of specific inhibitors for PLA2 might help in the development of new anti-inflammatory drugs. Polyhydroxy phenolic compounds, such as flavonoids, vitamin E, rosmarinic acid and aristolochic acid, are able to inhibit PLA2 from different sources. Herein, we have studied the kinetic behavior and the capacity of inhibiting edema formation induced by PLA2 of five different polyhydroxy phenolic compounds (two phenolic derivatives and three acetophenone hydroxylated derivatives) extracted from the venom of Crotalus adamanteus. The results showed that compounds 1,3-dihydroxy benzene, 1,3,5-trihydroxy benzene and 2,4,6-trihydroxy acetophenone were the most efficient in the inhibition of the enzymatic activity and edema induction by PLA2. It was also verified that the number of hydroxyls in each molecule is not a limiting factor for the inhibition capacity of these compounds. Molecular modeling studies indicated that the most active compounds are linked to the amino acid Asp 49 and that they destabilize the coordination of the calcium atom, which is essential to the catalytic activity. The study of potential surfaces showed that there are conditions in which the potential values must be adequate for enzyme complex formation with polyhydroxy phenolic compounds. When the potential over the hydroxyl surfaces is very high, formation of stable complexes does not occur and the enzyme does not act intensely. These results might be helpful in the design of a drug that specifically inhibits PLA2. © 2008 Elsevier Masson SAS. All rights reserved.441312321Teixeira, C.F.P., Landucci, E.C.T., Antunes, E., Chacur, M., Cury, Y., (2003) Toxicon, 42, pp. 947-962Gutiérrez, J.M., (2002) Rev. Biol. Trop., 50, pp. 377-394Gutiérrez, J.M., Lomonte, B., (1995) Toxicon, 33, pp. 1405-1424Funk, C.D., (2001) Science, 294, pp. 1871-1875Ikai, K., (1999) J. Dermatol. Sci., 21, pp. 135-146Murakami, M., Shimbara, S., Kambe, T., Kuwata, H., Winstead, M.V., Tischfield, J.A., Kudo, I., (1998) J. Biol. Chem., 273, pp. 14411-14423Yedar, S., Lichtenberg, D., Schnitzer, E., (2000) Biochim. Biophys. Acta, 1488, pp. 182-187Yedgar, S., Cohen, Y., Shoseyov, D., (2006) Biochim. Biophys. Acta, 1761, pp. 1373-1382Binisti, C., Touboul, E., Mounier, C., Heymans, F., Bon, C., Godfroid, J.J., (1997) J. Lipid Mediat. Cell Signal., 15, pp. 125-144Binisti, C., Assogba, L., Touboul, E., Mounier, C., Huet, J., Ombetta, J., Dong, C.Z., Godfroid, J.J., (2001) Eur. J. Med. Chem., 36, pp. 809-828Sekar, K., Eswaramoorthy, S., Jain, M.K., Sundaralingam, M., (1997) Biochemistry, 36, pp. 3104-3114Lindahl, M., Tagesson, C., (1993) Inflammation, 17, pp. 573-582Lindahl, M., Tagesson, C., (1997) Inflammation, 21, pp. 347-356Gil, B., Sanz, M.J., Terencio, M.C., Gunasegaran, R., Paya, M., Alcaraz, M.J., (1997) Biochem. Pharmacol., 53, pp. 733-740Kim, H.P., Pham, H., Ziboh, V.A., (2001) Prostaglandins Leukot. Essent. Fatty Acids, 65, pp. 281-286Di Carlo, G., Mascolo, N., Izzo, A.A., Capasso, F., (1991) Life Sci., 65, pp. 337-353Da Silva, S.L., Silva, A., Honório, K.M., Marangoni, S., Toyama, M.H., Da Silva, A.B.F., (2004) J. Mol. Struct. (THEOCHEM), 684, pp. 1-7Chandra, V., Kaur, P., Jasti, J., Betzel, C., Srinivasan, A., Singh, T.P., (2002) J. Mol. Biol., 320, pp. 215-222Chandra, V., Jasti, J., Kaur, P., Srinivasan, A., Betzel, C., Singh, T.P., (2002) Biochemistry, 41, pp. 10914-10919Ticli, F.K., Hage, L.I.S., Cambraia, R.S., Pereira, P.S., Magro, A.J., Fontes, M.R.M., Stábeli, R.G., Sampaio, S.V., (2005) Toxicon, 46, pp. 318-327Wells, M.A., (1971) Biochemistry, 10, pp. 4074-4083Smith, C., Wells, M.A., (1981) Biochim. Biophys. Acta, 663, pp. 687-694Tsao, F.H.C., Keim, P.S., Heinrikson, R.L., (1975) Arch. Biochem. Biophys., 167, pp. 706-717Samejima, Y., Aoki, D., Mebs, (1991) Toxicon, 29, pp. 461-468Schagger, H., Von Jagow, G., (1987) Anal. Biochem., 166, pp. 368-379Smart, B.P., Pan, Y.H., Weeks, A.K., Bollinger, J.G., Bahnson, B.J., Gelb, M.H., (2004) Bioorg. Med. Chem., 12, pp. 1737-1749Souza, A.D.L., Rodrigues-Filho, E., Souza, A.Q.L., Pereira, J.O., Clgarotto, A.K., Maso, V., Marangoni, S., Da Silva, S.L., (2008) Toxicon, 51, pp. 240-250Brunie, S., Bolin, J., Gewirth, D., Sigler, P.B., (1985) J. Biol. Chem., 260, pp. 9742-9749Arni, R.K., Ward, R.J., (1996) Toxicon, 34, pp. 827-841Berg, O.G., Gelb, M.H., Tsaí, M.-D., Jain, M.K., (2001) Chem. Rev., 101, pp. 2613-2653Jorgensen, W.L., Tirado-Rives, J., (1988) J. Am. Chem. Soc., 110, pp. 1657-1666HyperChem, Release 7.51 for Windows - Molecular Modeling System, Hypercube, U.S.A., 2002Gaussian03 Software, Gaussian Inc., 340 Quinnipiac Street, Bldg 40 Wallingford, CT 06492, U.S.A., 2003Becke, A.D., (1993) J. Chem. Phys., 98, p. 5648Hariharan, P.C., Pople, J.A., (1973) Theor. Chim. Acta, 28, p. 213Bernard, P., Scior, T., Didier, B., Hilbert, M., Berthon, J.Y., (2001) Phytochemistry, 58, pp. 865-874Takeda, A.A.S., Dos Santos, J.I., Marcussi, S., Silveira, L.B., Soares, A.M., Fontes, M.R.M., (2004) Biochim. Biophys. Acta, 1699, pp. 281-28
    corecore