194 research outputs found

    Extending the Ehresmann-Schein-Nambooripad Theorem

    Full text link
    We extend the `join-premorphisms' part of the Ehresmann-Schein-Nambooripad Theorem to the case of two-sided restriction semigroups and inductive categories, following on from a result of Lawson (1991) for the `morphisms' part. However, it is so-called `meet-premorphisms' which have proved useful in recent years in the study of partial actions. We therefore obtain an Ehresmann-Schein-Nambooripad-type theorem for meet-premorphisms in the case of two-sided restriction semigroups and inductive categories. As a corollary, we obtain such a theorem in the inverse case.Comment: 23 pages; final section on Szendrei expansions removed; further reordering of materia

    Quantum Mirrors and Crossing Symmetry as Heart of Ghost Imaging

    Full text link
    In this paper it is proved that the key to understanding the ghost imaging mystery are the crossing symmetric photon reactions in the nonlinear media. Hence, the laws of the plane quantum mirror (QM) and that of spherical quantum mirror, observed in the ghost imaging experiments, are obtained as natural consequences of the energy-momentum conservation laws. So, it is shown that the ghost imaging laws depend only on the energy-momentum conservation and not on the photons entanglement. The extension of these results to the ghost imaging with other kind of light is discussed. Some fundamental experiments for a decisive tests of the [SPDC-DFG]-quantum mirror are suggested.Comment: 11 pages, 9 figure

    Scales of the Extra Dimensions and their Gravitational Wave Backgrounds

    Get PDF
    Circumstances are described in which symmetry breaking during the formation of our three-dimensional brane within a higher-dimensional space in the early universe excites mesoscopic classical radion or brane-displacement degrees of freedom and produces a detectable stochastic background of gravitational radiation. The spectrum of the background is related to the unification energy scale and the the sizes and numbers of large extra dimensions. It is shown that properties of the background observable by gravitational-wave observatories at frequencies f104f\approx 10^{-4} Hz to 10310^3 Hz contain information about unification on energy scales from 1 to 101010^{10} TeV, gravity propagating through extra-dimension sizes from 1 mm to 101810^{-18}mm, and the dynamical history and stabilization of from one to seven extra dimensions.Comment: 6 pages, Latex, 1 figure, submitted to Phys. Re

    Comparison of text-messaging to voice telephone interviews for active surveillance of adverse events following immunisation

    Get PDF
    Objectives: In 2013, the Follow-up and Active Surveillance of Trivalent Influenza Vaccine in Mums (FASTMum) program began using short message service (SMS) to collect adverse event information in pregnant women who recently received trivalent influenza vaccine (TIV). This study was designed to compare data collected via SMS and telephone for the purposes of monitoring vaccine safety. Methods: A number of 344 women who received TIV were randomly assigned to a telephone interview group. They were telephoned seven days post-vaccination and administered a standard survey soliciting any adverse events following immunisation (AEFI) they experienced. They were matched by brand of vaccine, age group, and residence to 344 women who were sent a SMS seven days post-vaccination. The SMS solicited similar information. AEFI reported by SMS and telephone interview were compared by calculating risk ratios. Results: Response rate was higher to SMS compared to telephone interview (90.1% vs. 63.9%). Women who were surveyed by SMS were significantly less likely to report an AEFI compared to women who were surveyed by telephone (RR: 0.41; 95% CI: 0.29–0.59). The greatest discrepancies between SMS and telephone interview were for self-reported injection site reactions (3.1% vs. 16.8%) and unsolicited (or “other”) events (11.4% vs. 4.1%). Data collected by SMS was significantly timelier. Conclusions: Data collection by SMS results in significantly improved response rates and timeliness of vaccine safety data. Systems which incorporate SMS could be used to more rapidly detect safety signals and promote more rapid public health response to vaccine quality issues

    Cost effectiveness of thrombolytic therapy with tissue plasminogen activator as compared with streptokinase for acute myocardial infarction

    Get PDF
    BACKGROUND. Patients with acute myocardial infarction who were treated with accelerated tissue plasminogen activator (t-PA) (given over a period of 1 1/2 hours rather than the conventional 3 hours, and with two thirds of the dose given in the first 30 minutes) had a 30-day mortality that was 15 percent lower than that of pati

    The Hyperfine Spin Splittings In Heavy Quarkonia

    Get PDF
    The hyperfine spin splittings in heavy quarkonia are studied using the recently developed renormalization group improved spin-spin potential which is independent of the scale parameter μ\mu. The calculated energy difference between the J/ψJ/\psi and the ηc\eta_c fits the experimental data well, while the predicted energy difference ΔMp\Delta M_p between the center of the gravity of 13P0,1,21^3P_{0,1,2} states and the 11P11^1P_1 state of charmonium has the correct sign but is somewhat larger than the experimental data. This is not surprising since there are several other contributions to ΔMp\Delta M_p, which we discuss, that are of comparable size (1\sim 1 MeV) that should be included, before precise agreement with the data can be expected. The mass differences of the ψηc\psi'-\eta_c', Υ(1S)ηb\Upsilon(1S)-\eta_b, Υ(2S)ηb\Upsilon(2S)-\eta_b', and BcBcB_c^*-B_c are also predicted.Comment: 17 page

    Production of singlet P-wave ccˉc \bar c and bbˉb \bar b states

    Full text link
    No spin-singlet bbˉb \bar b quarkonium state has yet been observed. In this paper we discuss the production of the singlet P-wave bbˉb\bar{b} and ccˉc\bar{c} 1P1^1P_1 states hbh_b and hch_c. We consider two possibilities. In the first the 1P1^1P_1 states are produced via the electromagnetic cascades \ups(3S) \to \eta_b(2S) + \gamma \to h_b + \gamma \gamma \to \eta_b +\gamma\gamma\gamma and ψηc+γhc+γγηc+γγγ\psi'\to \eta_c' + \gamma \to h_c + \gamma \gamma \to \eta_c + \gamma\gamma\gamma. A more promising process consists of single pion transition to the 1P1^1P_1 state followed by the radiative transition to the 11S01^1S_0 state: \ups(3S)\to h_b + \pi^0 \to \eta_b + \pi^0 +\gamma and ψhc+π0ηc+π0+γ\psi' \to h_c + \pi^0 \to \eta_c + \pi^0 +\gamma. For a million \ups(3S) or ψ\psi''s produced we expect these processes to produce several hundred events.Comment: 13 pages, LaTeX, 1 figure, to be published Phys. Rev. D. Some equation numbers and one table number correcte

    Strong evidences of hadron acceleration in Tycho's Supernova Remnant

    Get PDF
    Very recent gamma-ray observations of G120.1+1.4 (Tycho's) supernova remnant (SNR) by Fermi-LAT and VERITAS provided new fundamental pieces of information for understanding particle acceleration and non-thermal emission in SNRs. We want to outline a coherent description of Tycho's properties in terms of SNR evolution, shock hydrodynamics and multi-wavelength emission by accounting for particle acceleration at the forward shock via first order Fermi mechanism. We adopt here a quick and reliable semi-analytical approach to non-linear diffusive shock acceleration which includes magnetic field amplification due to resonant streaming instability and the dynamical backreaction on the shock of both cosmic rays (CRs) and self-generated magnetic turbulence. We find that Tycho's forward shock is accelerating protons up to at least 500 TeV, channelling into CRs about the 10 per cent of its kinetic energy. Moreover, the CR-induced streaming instability is consistent with all the observational evidences indicating a very efficient magnetic field amplification (up to ~300 micro Gauss). In such a strong magnetic field the velocity of the Alfv\'en waves scattering CRs in the upstream is expected to be enhanced and to make accelerated particles feel an effective compression factor lower than 4, in turn leading to an energy spectrum steeper than the standard prediction {\propto} E^-2. This latter effect is crucial to explain the GeV-to-TeV gamma-ray spectrum as due to the decay of neutral pions produced in nuclear collisions between accelerated nuclei and the background gas. The self-consistency of such an hadronic scenario, along with the fact that the concurrent leptonic mechanism cannot reproduce both the shape and the normalization of the detected the gamma-ray emission, represents the first clear and direct radiative evidence that hadron acceleration occurs efficiently in young Galactic SNRs.Comment: Minor changes. Accepted for publication in Astronomy & Astrophysic

    Particle acceleration mechanisms

    Full text link
    We review the possible mechanisms for production of non-thermal electrons which are responsible for non-thermal radiation in clusters of galaxies. Our primary focus is on non-thermal Bremsstrahlung and inverse Compton scattering, that produce hard X-ray emission. We briefly review acceleration mechanisms and point out that in most astrophysical situations, and in particular for the intracluster medium, shocks, turbulence and plasma waves play a crucial role. We consider two scenarios for production of non-thermal radiation. The first is hard X-ray emission due to non-thermal Bremsstrahlung by nonrelativistic particles. Non-thermal tails are produced by accelerating electrons from the background plasma with an initial Maxwellian distribution. However, these tails are accompanied by significant heating and they are present for a short time of <10^6 yr, which is also the time that the tail will be thermalised. Such non-thermal tails, even if possible, can only explain the hard X-ray but not the radio emission which needs GeV or higher energy electrons. For these and for production of hard X-rays by the inverse Compton model, we need the second scenario where there is injection and subsequent acceleration of relativistic electrons. It is shown that a steady state situation, for example arising from secondary electrons produced from cosmic ray proton scattering by background protons, will most likely lead to flatter than required electron spectra or it requires a short escape time of the electrons from the cluster. An episodic injection of relativistic electrons, presumably from galaxies or AGN, and/or episodic generation of turbulence and shocks by mergers can result in an electron spectrum consistent with observations but for only a short period of less than one billion years.Comment: 22 pages, 5 figures, accepted for publication in Space Science Reviews, special issue "Clusters of galaxies: beyond the thermal view", Editor J.S. Kaastra, Chapter 11; work done by an international team at the International Space Science Institute (ISSI), Bern, organised by J.S. Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke
    corecore