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Abstract

The hyper�ne spin splittings in heavy quarkonia are studied using the re-

cently developed renormalization group improved spin-spin potential which is

independent of the scale parameter �. The calculated energy di�erence be-

tween the J= and the �c �ts the experimental data well, while the predicted

energy di�erence �Mp between the center of the gravity of 13P0;1;2 states and

the 11P1 state of charmonium has the correct sign but is somewhat larger

than the experimental data. This is not surprising since there are several

other contributions to �Mp, which we discuss, that are of comparable size

(� 1 MeV) that should be included, before precise agreement with the data

can be expected. The mass di�erences of the  0
� �0

c
, �(1S)� �b, �(2S)� �

0

b
,

and B�

c
� Bc are also predicted.
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I. INTRODUCTION

The hyper�ne splittings in heavy quark-antiquark systems can provide information about

strong interactions or Quantum Chromodynamics (QCD) at low energies. Since the motion

of the heavy quark and antiquark in heavy quarkonia is nonrelativistic, their dynamics can

be well described by nonrelativistic potential models. The hyper�ne splittings arise from

higher order relativistic corrections and can be calculated using perturbation theory, given

the appropriate spin-dependent potential. Recently, signi�cant progress has been made in

the theoretical study of the spin dependent potential [1]. In this work the spin-dependent

potentials were derived from QCD �rst principles using the Heavy Quark E�ective Theory

(HQET) [2]. The spin-dependent potential was separated into short distance parts involving

Wilson coe�cients and long distance parts which were expressed in terms of gauge invariant

correlation functions of the color-electric and color-magnetic �elds weighted by the Wilson

loop path integral [3]. If the tree level values for the Wilson coe�cients are used the potential

reduces to Eichten's and Feinberg's result [3]. And using the one-loop values of the Wilson

coe�cients, also calculating the correlation functions to one-loop in perturbation theory,

the spin-dependent potential at the one-loop level in perturbation QCD [4,5] is recovered.

However, the leading logarithmic terms appearing in perturbative calculations were also

summed up in Ref. [1] using the Renormalization Group Equation (RGE) to obtain a scale

independent result. Therefore, the spin-dependent heavy quark-antiquark potential derived

in Ref. [1] is scale-independent and thus improves upon and generalizes both Eichten's and

Feinberg's result [3] and the one-loop perturbative result [4,5]. In addition, this improved

result [1] satis�es all the general relations among the di�erent parts of the spin-dependent

potential [6]. In the following we use this improved, more general potential [1] to calculate

the hyper�ne splittings in the c�c, c�b, and b�b systems. Speci�cally, we calculate the energy

di�erence between the 3S1 and the 1S0 states and the di�erence �Mp between the center of

the gravity of the 3P0;1;2 states and the 1P1 state.

First we note that the P -wave hyper�ne splitting �Mp in charmonium has been exper-
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imentally determined to be �0:9 � 0:2 MeV [7], which is not only much smaller than the

splittings caused by the spin-orbit and the tensor interactions, but also the S-wave hyper-

�ne splittings, which typically are 50� 100 MeV. Naively, one might estimate the hyper�ne

splitting to be smaller than the spin-orbit and tensor splittings by the order of v2, where

v is the relative quark-antiquark velocity, or about 1/10 in charmonium. This interesting

point has been studied previously [8{13]. According to the Fermi-Breit formula, which fol-

lows from lowest order perturbation theory, the hyper�ne spin splitting is proportional to

the wavefunction at the origin, which vanishes for P -waves. However, one-loop corrections

give logarithmic terms that are nonlocal and allow a non-zero contribution to the P -wave

hyper�ne splittings. Several previous calculations [8{11] of �Mp used only the one-loop per-

turbative spin-spin potential [4,5] and the results are remarkably close to the experimental

value. This agreement with the experimental value of �Mp, taking into account only the

one-loop contribution is surprising, since there are other contributions to �Mp of similar

size; for example, nonlocal terms coming from higher orders. We will discuss such e�ects

below, as it is instructive to see how these higher order contributions could a�ect the results.

In the following we will use the general formula for the spin-spin part of the

renormalization-group-improved spin-dependent potential that was derived in Ref. [1] to

calculate the hyper�ne spin splittings in the c�c, b�b, and c�b systems. Since the spin-spin

potential is a short distance feature, perturbation theory can reliably be used in the cal-

culation. Our result for the 13S1 � 11S0 splitting between the J= and the �c agrees well

with the experimental value and our predictions for the mass di�erences  0��0c, �(1S)��b,

�(2S) � �0b, and B
�
c � Bc are reasonable. However, the contribution to the P -wave energy

di�erence, �Mp, between the center of the gravity of 13P0;1;2 states and the 11P1 state, while

having the correct sign, is somewhat larger than the experimental data. That is, when the

contributions of the leading logarithmic terms are summed up and included, the agreement

with that data is not as good as when only the one-loop perturbative spin-spin potential,

in which the leading logarithmic contributions are not summed up and included is used.
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We will discuss the implications of these results in greater detail below and point out that

there are several other contributions to the rather small energy di�erence �Mp which esti-

mates indicate are of the same order of magnitude as the spin-spin contribution. It therefore

appears that the agreement of the one-loop perturbative result with the data is probably

fortuitous.

The following Sec. II is devoted to the calculational methods. In Sec. III we present our

numerical results and in Sec. VI we discuss these results and our conclusions.

II. CALCULATIONAL METHODS

To calculate the hyper�ne splittings in the heavy quark-antiquark systems we will use the

spin-spin part of the renormalization-group improved general formula for the spin-dependent

potential [1] derived in the framework of HQET [2]. In the derivation the renormalized two-

particle e�ective Lagrangian was �rst calculated to order 1=m2. Then, treating the terms

of higher order in 1=m in the e�ective Lagrangian as perturbations, the four point Green's

function on the Wilson loop [15] with the time interval T was calculated in the limit where

m!1 �rst followed by T !1 [16,3]. In this limit, using standard perturbative methods,

the large T behavior of the Green's function is of the form

I / e�T�(m;r): (1)

From Eq. (1) �(m; r), the potential energy between the quark and the antiquark, can be

extracted. Expanding �(m; r) in powers of 1=m each of the spin-dependent potentials can

be factorized into a short distance part, involving Wilson coe�cients, and a long distance

part, which can be expressed in terms of correlation functions of the color-electric and color-

magnetic �elds weighted by the Wilson-loop integral. Using the notation of Ref. [1], the

resulting spin-spin potential is

�Hss(m1;m2; r) =
S1 � S2

3m1m2

h
c3(�;m1)c3(�;m2)V4(�; r)� 6Ncg

2
s (�)d(�)�

3(r)
i
; (2)
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wherem1,m2, and S1, S2 are the masses and the spins of the heavy quark and the antiquark,

respectively, � is the renormalization subtraction point, Nc is the number of colors, and gs(�)

is the running coupling constant. The Wilson coe�cients c3(�;m) and d(�) were calculated

in leading logarithmic approximation in Ref. [14] and Ref. [1], respectively, and are

c3(�;m) =

 
�s(�)

�s(m1)

!� 9

25

; (3)

and

d(�) =
N2

c � 1

8N2
c

c3(m2;m1)[1� c23(�;m2)]

=
N2

c � 1

8N2
c

 
�s(m2)

�s(m1)

!� 9

25

2
41 �

 
�s(�)

�s(m2)

!� 18

25

3
5 : (4)

In Eq. (2) V4(�; r) is the color magnetic-magnetic correlation function which can be expressed

as

V4(�; r) � lim
T!1

Z T=2

�T=2
dz

Z T=2

�T=2
dz0

g2s(�)

T
hBi(x1; z)B

i(x2; z
0)i=h1i; (5)

where h� � �i is de�ned by

h� � �i �

Z
[dA�]Tr

(
P

"
exp

 
ig

I
C(r;T )

dz�A
�(z)

!
� � �

#)
x2C

exp(iSYM (A)); (6)

Here C(r; T ) represents the Wilson loop [15], P denotes the path ordering, and r � jx1�x2j.

We emphasize that this is a general result for the hyper�ne part of the spin-dependent

potential to order 1=m2. It absorbs the short distance contributions to the potential into

the coe�cients c3(�;m) and d(�) while the long distance contributions to the potential are

contained in the correlation function V4(�; r). Moreover, the result is independent of the

factorization scale since the �-dependence in the coe�cients cancels the �-dependence in

the correlation function. The �rst term in the bracket in Eq. (2) is a nonlocal term while

the second term is a local one which is generated by mixing with the �rst (nonlocal) term

under renormalization. We note that if the coe�cients are evaluated at tree level; i.e.,

c3(�;m) = 1 and d(�) = 0, the potential reduces to the Eichten-Feinberg result [3]. And if

these coe�cients are expanded to order �s(�) and the correlation function is also evaluated
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only to one-loop, the logarithmic terms in Eq. (2) then reduce to the one-loop spin-spin

potential [4,5]. Therefore, this renormalization-group improved potential, Eq. (2), extends

both Eichten's and Feinberg's result [3] as well as the one-loop perturbative potential [4,5],

containing each of these results as special cases.

In a heavy quarkonium state the typical momentum transfer is of order mv, where v is

the relative velocity of the heavy quark and the antiquark, and the typical size is of order

1=(mv). In such a low momentum region the correlation function V4(�; r) could in principle

have nonperturbative contributions and should, therefore, be calculated using nonpertur-

bative methods. However, since con�nement in QCD is color-electrical, it is reasonable to

expect the color-magnetic �eld to be predominately a short distance e�ect. Thus the color

magnetic-magnetic correlation function V4(�; r) should fall o� quite fast when the distance

r becomes large. This is con�rmed both by lattice calculations [18] and by the experimental

fact that �Mp is empirically very small. If V4(�; r) had a signi�cant long distance component

�Mp would be considerably larger, contrary to the data. We therefore can safely assume

that the potential V4(�; r) is a short distance e�ect which can be calculated using pertur-

bative QCD. Its perturbative expression can be obtained from the following arguments: As

mentioned above, the result for �Hss(r) in Eq. (2) is �-independent since the �-dependence

in the coe�cients cancels the �-dependence in the correlation function. However, to explic-

itly demonstrate this cancellation to all orders one must calculate the correlation function

to all orders, which is impossible to do directly. Fortunately, using the RGE, this can be

done in the leading logarithmic approximation. In momentum space the Fourier transfor-

mation of V4(�; r), denoted by eV4(�; q), is dimensionless and is only a function of the two

variables � and q. It must, therefore, be a function of ln(q2=�2) and these logarithms can

be summarized using the RGE in the e�ective theory. Alternately, there is another simple

approach: If we choose � = q all of these logarithmic terms vanish and only the tree level

term
N2

c � 1

Nc

g2s (�)j�=q remains in eV4(�; q) in the leading logarithmic approximation. Then

all the nonlocal logarithmic terms having been absorbed into the coe�cients c3(q;m) and
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d(q). Consequently, we �nd the hyper�ne part of the spin-dependent potential in momentum

space in the leading logarithmic approximation to be

�fHss(m1;m2; q) =
S1 � S2

3m1m2

g2s (q)

"
N2

c � 1

Nc

c3(q;m1)c3(q;m2)� 6Ncd(q)

#
; (7)

where c3(q;m) and d(q) are given by Eqs. (3) and (4). This �nal formula, Eq. (7), for the

hyper�ne spin-dependent potential, which we will use in our calculations of the hyper�ne

spin-splittings in the c�c, c�b, and b�b systems, improves upon the one-loop perturbative cal-

culation in two important respects: (i) it is independent of � and (ii) it includes the higher

order logarithmic terms.

To �rst order perturbation theory in �Hss the energy shift caused by �Hss(r) is

�E =
Z
d3r	�

l;lz
(r)�Hss(r)	l;lz(r) (8)

where 	l;lz(r) is the nonrelativistic wavefunction of the bound state with total angular

momentum l and z-component lz. For simplicity we suppress spin and color indices and

retain only the space-dependent indices. Separating the radial part, u(r), we write 	l;lz(r)

as

	l;lz(r) = u(r) Yl;lz(�; �); (9)

where Yl;m(�; �) are the standard spherical harmonics. Rotational invariance implies that

�E is independent of lz. Averaging over lz and using properties of the spherical harmonics,

�E can be expressed as

�E =
Z
d3r

4�
ju(r)j2�Hss(r): (10)

Taking the Fourier transform, in momentum space �E is given by

�E =
Z

d3q

(2�)3
�(q)�fHss(q); (11)

where

�(q) =
Z
d3r

4�
eiq�rju(r)j2 =

1

q

Z
dr r sin qrju(r)j2: (12)
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Finally, doing the angular integration we have

�E =
1

2�2

Z
dq q2�(q)�fHss(q); (13)

which we will use to numerically calculate the hyper�ne splittings. Of course, the radial

wave function u(r) must �rst be obtained by numerically solving the Schr�odinger equation

with some chosen potential and then �(q) [Eq. (12)] can easily be calculated by using the

Fast Fourier Transformation program.

III. NUMERICAL RESULTS

Using Eqs. (7), (12), and (13) the hyper�ne spin splittings for both the S-wave and the

P -wave states were numerically calculated. The radial wavefunction was obtained by nu-

merically solving the Schr�odinger equation. For comparison, we used three popular potential

models. One was the Cornell model [19] in which the potential has the form,

V (r) = �
�

r
+

r

a2
; (14)

with

mc = 1:84 GeV ; mb = 5:18 GeV ;

� = 0:52 GeV ; a = 2:34 GeV :
(15)

The second one was the logarithmic potential [20] given by

V (r) = �0:6635 GeV + (0:733 GeV ) log(r � 1GeV ); (16)

with

mc = 1:5 GeV ; mb = 4:906 GeV : (17)

The third one was the improved QCD-motivated potential [8] with the form

V (r) =
r

a2
�
16�

25

1

rf(r)

"
1 +

2E + 53
75

f(r)
�
462

625

ln f(r)

f(r)

#
; (18)

7



where f(r) was given by

f(r) = 2 ln

0
@�MS + (�II � �MS) exp

h
� [15 (0:75�II ��MS) r]

2
i

�II�MS r
+ C

1
A (19)

with

mc = 1:478 GeV ; mb = 4:878 GeV ;

�II = 0:72 GeV ; a = 2:59 GeV �1;

C = 4:62:

(20)

To proceed with the calculation we also required an expression for the running coupling

constant �s(q). The familiar RGE, one-loop result is

�s(q) =
4�

b0 ln
q2

�2

MS

; (21)

where b0 = 11Nc � 2Nf and Nf is the number of quark avors. It is clear from Eq. (21)

that �s(q) contains a Landau singularity in the nonperturbative region when q2 = �2
MS

and becomes negative for q2 < �2

MS
. To avoid the resulting numerical ambiguities we �rst

moved this singularity to q2 = 0 and used a modi�ed form of �s(q) in the actual numerical

calculations; namely,

�s(q) =
4�

b0 ln

 
q2

�2

MS

+ 1

! : (22)

In the next section we shall discuss alternative approaches, the sensitivity of the results, and

their implications. The value of �MS was taken to be 200 MeV and 250 MeV in the numerical

calculations, which is within the experimental range �MS = 195 + 65 � 50 MeV [21]. Our

numerical results for the three potentials are presented in Tables I, II, III, respectively. For

comparison we have also included the results for the 2S and 2P states. The main features

of these results can be summarized as follows:

� The results are �-independent, as they must be.
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� The calculated energy di�erence between the J=	 and the �c mesons is quite close to

the experimental value for all three potentials.

� For each of these three potentials we predict the energy di�erence between 	0 and �0c

to lie within the range 55 � 80 MeV.

� For the b�b system there are signi�cant discrepancies between the Cornell model, with

the parameters given by Eq. (15), and the other two models for the S-states. Since

the Cornell model, with these parameters, does not predict the b�b spectrum very well,

the results calculated in the other two models are probably better predictions for the

energy di�erence between the �(1S) and the �b (35�50 MeV) and between the �(2S)

and the �0b (20 MeV).

� The predicted energy di�erence between B�
c and Bc meson is in the range 40�70 MeV

from all three of these models, which is consistent with previous results [13].

� The calculated value of �Mp � E(13PJ ) � E(11P1) for the charmonium 1P states is

in the range of �4 to �6 MeV, which has the same sign but is several times larger

than the experimental value of �0:9� 0:2 MeV [7]. This is not surprising since there

are several other contributions to �Mp which estimates indicate are comparable in

magnitude to the contribution coming from the hyper�ne spin-spin interaction, Hss.

In fact, it is surprising that the prediction from only the one-loop spin-dependent

potential is quite close to the experimental data. We discuss these other contributions

in the next section.

IV. DISCUSSION AND CONCLUSIONS

We have calculated the hyper�ne spin splittings in the c�c, b�b, and b�c system using the

RGE improved perturbative spin-spin potential [1]. The results for the hyper�ne splittings

of the S-wave states agree with the J=	� �c measured splitting [21] and the prediction for

splitting ���b is reasonable. However, the contribution to �Mp � E(3PJ )�E(1P1) for the

9



charmonium P -wave states is somewhat larger than the experimental data [7], although it

agrees in sign. That is, after summing up the leading logarithmic terms and including them

in the perturbation calculations, the agreement with the data is not as good as the one-loop

calculations [8{11]. In order to illustrate this clearly, we can expand �s(q) in terms of �s(�)

and truncate it at some �nite order. In our �nal formula, Eq. (7), we used the expansion

for �s(q),

�s(q) =
�s(�)

1�
b0

4�
�s(�) ln

�2

q2

= �s(�)

"
1 +

nX
m=1

 
b0

4�
�s(�) ln

�2

q2

!m #
; (23)

and truncated at several choices of n. Speci�cally, we repeated the numerical calculations

for the improved QCD motivated potential [8] for n = 1, 2 and 4, choosing the scale �,

now to be � = 1:5 GeV, 4.0 GeV, and 2.5 GeV for the c�c, b�b, b�c systems, respectively. The

numerical results are presented in Tables IV, V, and VI corresponding to n = 1, 2, and

4, respectively. For comparison, we also presented the results obtained using the complete

one-loop hyper�ne potential [4,5] in Table VII. Comparing Table IV and Table VII we see

that �MP for n = 1 is quite close to the complete one-loop result. However, from Table V

and Table VI we see that the predicted values of �Mp are about 60%-80% and 150%-200%

larger than when terms up to order 2 and order 4 are kept in the expansion of �s(q), Eq. (23).

We note that we also repeated these calculations for the logarithmic potential [20] and the

Cornell potential [19]. All three potentials predicted similar values for �Mp. This clearly

indicates that the nonlocal logarithmic terms from high loop perturbative calculations are

quite important. In fact, even using the RGE to sum up these logarithmic terms does not

allow one to understand the experimental value of �Mp, indicating that the success of the

one-loop calculations [8{11] was probably fortuitous. In fact, there are several additional

contributions that are possibly comparable in magnitude. These include the following:

The contributions of the spin-orbit and and tensor potentials in the second order of

perturbation theory: These contributions to �Mp only cancel to �rst order in perturbation

theory. However, according to the power counting rules introduced in Ref. [22], the spin-

orbit and tensor potential potentials shift the energies of the P -wave states by an amount

10



of order mv4 in �rst order, which indeed cancel in �Mp, but they do make a contribution

to �Mp of order mv6 in the second order of perturbation theory. This estimate is several

MeV for the P -wave charmonium states, and therefore should not be neglected.

Higher dimensional operators: Unlike the dimension-six operators, these give non-zero

contributions to �Mp even at tree level. Compared to the one-loop contribution, these are

suppressed by v2 but enhanced by ��1s and v2=�s � 1 in charmonium.

The color-octet S-wave component in P -wave quarkonia states [22]: This component of

the wavefunction receives a tree-level contribution from the local term �3(r) in the spin-spin

potential. This contribution too could be of order v2=�s � 1 compared to what has been

calculated.

Next-to-leading order perturbative contributions from the two-loop potential: These are

suppressed by order �s, but since �s is not a very small quantity in charmonium, one cannot

dismiss the possibility that this contribution could be signi�cant.

Before comparing with the experimental value of �Mp in charmonium, which is only

about 1 MeV, all the above contribution should be included since they are possibly compa-

rable in magnitude. In the b�b case these e�ects are less important and one can expect the

perturbative calculations the b�b system to be more reliable, although �Mp is smaller, also.

Finally, to explore the sensitivity of our results to the location of the Landau singularity

in �s(q) we replaced the expression, Eq. (20), by

�s(q) =
4�

b0 ln

 
q2

�2

MS

+ �2
! : (24)

and varied �2. The results for the S- wave hyper�ne splitting were not sensitive to �2 and

only for large �2 did �Mp signi�cantly decrease. To �t �Mp to the measured value required

�2 quite large, about 16, clearly out of the perturbative region.
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Table I. The hyper�ne spin splittings in MeV predicted by Eq (7) with Cornell

potential [19]

c�c b�b b�c

�MS (MeV) 200 250 200 250 200 250

E(13S1)� E(11S0) 117.1 128.3 97.7 104.3 67.0 71.4

E(23S1)� E(21S0) 75.3 82.5 39.6 42.2 37.7 40.3

E(13PJ )� E(11P1) -4.8 -7.0 -3.0 -4.1 -4.0 -5.6

E(23PJ )� E(21P1) -3.6 -5.2 -2.1 -2.9 -3.0 -4.2

Table II. The hyper�ne spin splittings inMeV predicted by Eq (7) with Logarithmic

potential [20]

c�c b�b b�c

�MS (MeV) 200 250 200 250 200 250

E(13S1)� E(11S0) 106.1 117.1 36.0 38.2 40.6 42.6

E(23S1)� E(21S0) 54.2 59.7 18.7 19.8 21.2 22.3

E(13PJ )� E(11P1) -5.4 -7.8 -3.4 -4.5 -4.5 -6.4

E(23PJ )� E(21P1) -2.6 -3.8 -2.1 -2.8 -2.8 -4.0

Table III. The hyper�ne spin splittings in MeV predicted by Eq (7) with Improved-

QCD motivated potential [8]

c�c b�b b�c

�MS (MeV) 200 250 200 250 200 250

E(13S1)� E(11S0) 107.9 119.1 44.6 47.6 43.4 45.7

E(23S1)� E(21S0) 68.5 75.6 20.9 22.4 25.2 26.7

E(13PJ )� E(11P1) -4.6 -6.7 -2.7 -3.7 -3.7 -5.3

E(23PJ )� E(21P1) -3.4 -5.0 -1.8 -2.5 -2.6 -3.8
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Table IV. The hyper�ne spin splittings in MeV predicted by Eq (7) with n = 1 for

the Improved-QCD motivated potential [8]

c�c b�b b�c

�MS (MeV) 200 250 200 250 200 250

E(13S1)� E(11S0) 111.8 125.4 45.7 49.2 45.2 48.6

E(23S1)� E(21S0) 71.3 80.1 21.5 23.2 26.3 28.4

E(13PJ )� E(11P1) -1.5 -1.9 -1.0 -1.2 -1.2 -1.5

E(23PJ )� E(21P1) -1.0 -1.3 -0.7 -0.8 -0.9 -1.2

Table V. The hyper�ne spin splittings in MeV predicted by Eq (7) with n = 2 for

the Improved-QCD motivated potential [8]

c�c b�b b�c

�MS (MeV) 200 250 200 250 200 250

E(13S1)� E(11S0) 110.5 123.4 45.2 48.5 44.7 47.8

E(23S1)� E(21S0) 70.6 79.1 21.3 23.0 26.1 28.2

E(13PJ )� E(11P1) -2.5 -3.4 -1.6 -2.0 -2.0 -2.7

E(23PJ )� E(21P1) -1.6 -2.2 -1.0 -1.3 -1.4 -1.8

Table VI. The hyper�ne spin splittings in MeV predicted by Eq (7) with n = 4 for

the Improved-QCD motivated potential [8]

c�c b�b b�c

�MS (MeV) 200 250 200 250 200 250

E(13S1)� E(11S0) 108.8 120.4 44.8 47.9 43.9 46.5

E(23S1)� E(21S0) 69.3 76.8 21.0 22.7 25.6 27.4

E(13PJ )� E(11P1) -4.0 -6.2 -2.3 -3.0 -3.1 -4.3

E(23PJ )� E(21P1) -2.8 -4.3 -1.4 -1.9 -2.1 -2.9
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Table VII. The hyper�ne spin splittings in MeV predicted by the complete one-loop

spin-spin potential [4,5] with Improved-QCD motivated potential [8]

c�c b�b b�c

�MS (MeV) 200 250 200 250 200 250

E(13S1)� E(11S0) 127.7 145.7 50.1 54.3 39.2 41.5

E(23S1)� E(21S0) 81.5 93.3 23.4 25.6 22.6 23.9

E(13PJ )� E(11P1) -1.2 -1.5 -0.6 -0.7 -0.6 -0.7

E(23PJ )� E(21P1) -1.1 -1.3 -0.5 -0.6 -0.5 -0.6
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