241 research outputs found

    Lattice Sigma Models with Exact Supersymmetry

    Get PDF
    We show how to construct lattice sigma models in one, two and four dimensions which exhibit an exact fermionic symmetry. These models are discretized and {\it twisted} versions of conventional supersymmetric sigma models with N=2 supersymmetry. The fermionic symmetry corresponds to a scalar BRST charge built from the original supercharges. The lattice theories possess local actions and in many cases admit a Wilson term to suppress doubles. In the two and four dimensional theorie s we show that these lattice theories are invariant under additional discrete symmetries. We argue that the presence of these exact symmetries ensures that no fine tuning is required to achieve N=2 supersymmetry in the continuum limit. As a concrete example we show preliminary numerical results from a simulation of the O(3) supersymmetric sigma model in two dimensions.Comment: 23 pages, 3 figures, formalism generalized to allow for explicit Wilson mass terms. New numerical results added. Version to be published in JHE

    Exact scaling in the expansion-modification system

    Full text link
    This work is devoted to the study of the scaling, and the consequent power-law behavior, of the correlation function in a mutation-replication model known as the expansion-modification system. The latter is a biology inspired random substitution model for the genome evolution, which is defined on a binary alphabet and depends on a parameter interpreted as a \emph{mutation probability}. We prove that the time-evolution of this system is such that any initial measure converges towards a unique stationary one exhibiting decay of correlations not slower than a power-law. We then prove, for a significant range of mutation probabilities, that the decay of correlations indeed follows a power-law with scaling exponent smoothly depending on the mutation probability. Finally we put forward an argument which allows us to give a closed expression for the corresponding scaling exponent for all the values of the mutation probability. Such a scaling exponent turns out to be a piecewise smooth function of the parameter.Comment: 22 pages, 2 figure

    On Paragrassmann Differential Calculus

    Get PDF
    Explicit general constructions of paragrassmann calculus with one and many variables are given. Relations of the paragrassmann calculus to quantum groups are outlined and possible physics applications are briefly discussed. This paper is the same as the original 9210075 except added Appendix and minor changes in Acknowledgements and References. IMPORTANT NOTE: This paper bears the same title as the Dubna preprint E5-92-392 but is NOT identical to it, containing new results, extended discussions, and references.Comment: 19p

    Fermion Masses and Gauge Mediated Supersymmetry Breaking from a Single U(1)

    Get PDF
    We present a supersymmetric model of flavor. A single U(1) gauge group is responsible for both generating the flavor spectrum and communicating supersymmetry breaking to the visible sector. The problem of Flavor Changing Neutral Currents is overcome, in part using an `Effective Supersymmetry' spectrum among the squarks, with the first two generations very heavy. All masses are generated dynamically and the theory is completely renormalizable. The model contains a simple Froggatt-Nielsen sector and communicates supersymmetry breaking via gauge mediation without requiring a separate messenger sector. By forcing the theory to be consistent with SU(5) Grand Unification, the model predicts a large tan beta and a massless up quark. While respecting the experimental bounds on CP violation in the K-system, the model leads to a large enhancement of CP violation in B-(B bar) mixing as well as in B decay amplitudes.Comment: LaTeX, 25 pages, 8 figure

    The critical Ising model via Kac-Ward matrices

    Full text link
    The Kac-Ward formula allows to compute the Ising partition function on any finite graph G from the determinant of 2^{2g} matrices, where g is the genus of a surface in which G embeds. We show that in the case of isoradially embedded graphs with critical weights, these determinants have quite remarkable properties. First of all, they satisfy some generalized Kramers-Wannier duality: there is an explicit equality relating the determinants associated to a graph and to its dual graph. Also, they are proportional to the determinants of the discrete critical Laplacians on the graph G, exactly when the genus g is zero or one. Finally, they share several formal properties with the Ray-Singer \bar\partial-torsions of the Riemann surface in which G embeds.Comment: 30 pages, 10 figures; added section 4.4 in version

    Electroweak Radiative Corrections to Parity-Violating Electroexcitation of the Δ\Delta

    Get PDF
    We analyze the degree to which parity-violating (PV) electroexcitation of the Δ(1232)\Delta(1232) resonance may be used to extract the weak neutral axial vector transition form factors. We find that the axial vector electroweak radiative corrections are large and theoretically uncertain, thereby modifying the nominal interpretation of the PV asymmetry in terms of the weak neutral form factors. We also show that, in contrast to the situation for elastic electron scattering, the axial NΔN\to\Delta PV asymmetry does not vanish at the photon point as a consequence of a new term entering the radiative corrections. We argue that an experimental determination of these radiative corrections would be of interest for hadron structure theory, possibly shedding light on the violation of Hara's theorem in weak, radiative hyperon decays.Comment: RevTex, 76 page

    Axial anomaly in the reduced model: Higher representations

    Full text link
    The axial anomaly arising from the fermion sector of \U(N) or \SU(N) reduced model is studied under a certain restriction of gauge field configurations (the ``\U(1) embedding'' with N=LdN=L^d). We use the overlap-Dirac operator and consider how the anomaly changes as a function of a gauge-group representation of the fermion. A simple argument shows that the anomaly vanishes for an irreducible representation expressed by a Young tableau whose number of boxes is a multiple of L2L^2 (such as the adjoint representation) and for a tensor-product of them. We also evaluate the anomaly for general gauge-group representations in the large NN limit. The large NN limit exhibits expected algebraic properties as the axial anomaly. Nevertheless, when the gauge group is \SU(N), it does not have a structure such as the trace of a product of traceless gauge-group generators which is expected from the corresponding gauge field theory.Comment: 21 pages, uses JHEP.cls and amsfonts.sty, the final version to appear in JHE

    Transition from post-capillary pulmonary hypertension to combined pre- and post-capillary pulmonary hypertension in swine

    Get PDF
    Passive, isolated post‐capillary pulmonary hypertension (IpcPH) secondary to left heart disease may progress to combined pre‐ and post‐capillary or ‘active’ PH (CpcPH) characterized by chronic pulmonary vascular constriction and remodelling. The mechanisms underlying this ‘activation’ of passive pulmonary hypertension (PH) remain incompletely understood. Here we investigated the role of the vasoconstrictor endothelin‐1 (ET) in the progression from IpcPH to CpcPH in a swine model for post‐capillary PH. Swine underwent pulmonary vein banding (PVB; n = 7) or sham‐surgery (Sham; n = 6) and were chronically instrumented 4 weeks later. Haemodynamics were assessed for 8 weeks, at rest and during exercise, before and after administration of the ET receptor antagonist tezosentan. After sacrifice, the pulmonary vasculature was investigated by histology, RT‐qPCR and myograph experiments. Pulmonary arterial pressure and resistance increased significantly over time. mRNA expression of prepro‐endothelin‐1 and endothelin converting enzyme‐1 in the lung was increased,

    New Insights into White-Light Flare Emission from Radiative-Hydrodynamic Modeling of a Chromospheric Condensation

    Full text link
    (abridged) The heating mechanism at high densities during M dwarf flares is poorly understood. Spectra of M dwarf flares in the optical and near-ultraviolet wavelength regimes have revealed three continuum components during the impulsive phase: 1) an energetically dominant blackbody component with a color temperature of T \sim 10,000 K in the blue-optical, 2) a smaller amount of Balmer continuum emission in the near-ultraviolet at lambda << 3646 Angstroms and 3) an apparent pseudo-continuum of blended high-order Balmer lines. These properties are not reproduced by models that employ a typical "solar-type" flare heating level in nonthermal electrons, and therefore our understanding of these spectra is limited to a phenomenological interpretation. We present a new 1D radiative-hydrodynamic model of an M dwarf flare from precipitating nonthermal electrons with a large energy flux of 101310^{13} erg cm2^{-2} s1^{-1}. The simulation produces bright continuum emission from a dense, hot chromospheric condensation. For the first time, the observed color temperature and Balmer jump ratio are produced self-consistently in a radiative-hydrodynamic flare model. We find that a T \sim 10,000 K blackbody-like continuum component and a small Balmer jump ratio result from optically thick Balmer and Paschen recombination radiation, and thus the properties of the flux spectrum are caused by blue light escaping over a larger physical depth range compared to red and near-ultraviolet light. To model the near-ultraviolet pseudo-continuum previously attributed to overlapping Balmer lines, we include the extra Balmer continuum opacity from Landau-Zener transitions that result from merged, high order energy levels of hydrogen in a dense, partially ionized atmosphere. This reveals a new diagnostic of ambient charge density in the densest regions of the atmosphere that are heated during dMe and solar flares.Comment: 50 pages, 2 tables, 13 figures. Accepted for publication in the Solar Physics Topical Issue, "Solar and Stellar Flares". Version 2 (June 22, 2015): updated to include comments by Guest Editor. The final publication is available at Springer via http://dx.doi.org/10.1007/s11207-015-0708-
    corecore