Abstract

The axial anomaly arising from the fermion sector of \U(N) or \SU(N) reduced model is studied under a certain restriction of gauge field configurations (the ``\U(1) embedding'' with N=LdN=L^d). We use the overlap-Dirac operator and consider how the anomaly changes as a function of a gauge-group representation of the fermion. A simple argument shows that the anomaly vanishes for an irreducible representation expressed by a Young tableau whose number of boxes is a multiple of L2L^2 (such as the adjoint representation) and for a tensor-product of them. We also evaluate the anomaly for general gauge-group representations in the large NN limit. The large NN limit exhibits expected algebraic properties as the axial anomaly. Nevertheless, when the gauge group is \SU(N), it does not have a structure such as the trace of a product of traceless gauge-group generators which is expected from the corresponding gauge field theory.Comment: 21 pages, uses JHEP.cls and amsfonts.sty, the final version to appear in JHE

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019
    Last time updated on 02/01/2020