3,584 research outputs found

    Fos co-operation with PTEN loss elicits keratoacanthoma not carcinoma due to p53/p21<sup>WAF</sup>-induced differentiation triggered by GSK3b inactivation and reduced AKT activity

    Get PDF
    To investigate gene synergism in multistage skin carcinogenesis, the RU486-inducible cre/lox system was employed to ablate PTEN function [K14.cre/D5PTENflx] in mouse epidermis expressing activated v-fos [HK1.fos]. RU486-treated HK1.fos/D5PTENflx mice exhibited hyperplasia, hyperkeratosis and tumours that progressed to highly differentiated keratoacanthomas rather than carcinomas, due to re-expression of high p53 and p21WAF levels. Despite elevated MAP kinase activity, cyclin D1/E2 over expression and increased AKT activity forming areas of highly proliferative, papillomatous keratinocytes, increasing levels of GSK3b inactivation exceeded a threshold that induced p53/p21WAF expression to halt proliferation and accelerate differentiation, giving the hallmark keratosis of keratoacanthomas. A pivotal facet to this GSK3b-triggered mechanism centred on increasing p53 expression in basal layer keratinocytes. This reduced activated AKT expression and released inhibition of p21WAF, which accelerated keratinocyte differentiation, as indicated by unique basal layer expression of differentiation-specific keratin K1, alongside premature filaggrin and loricrin expression. Thus, fos synergism with PTEN loss elicited a benign tumour context where GSK3b-induced, p53/p21WAF expression continually switched AKT-associated proliferation into one of differentiation, preventing further progression. This putative compensatory mechanism required the critical availability of normal p53 and/or p21WAF otherwise deregulated fos, Akt and GSK3b associate with malignant progression

    Competing density-wave orders in a one-dimensional hard-boson model

    Get PDF
    We describe the zero-temperature phase diagram of a model of bosons, occupying sites of a linear chain, which obey a hard-exclusion constraint: any two nearest-neighbor sites may have at most one boson. A special case of our model was recently proposed as a description of a ``tilted'' Mott insulator of atoms trapped in an optical lattice. Our quantum Hamiltonian is shown to generate the transfer matrix of Baxter's hard-square model. Aided by exact solutions of a number of special cases, and by numerical studies, we obtain a phase diagram containing states with long-range density-wave order with period 2 and period 3, and also a floating incommensurate phase. Critical theories for the various quantum phase transitions are presented. As a byproduct, we show how to compute the Luttinger parameter in integrable theories with hard-exclusion constraints.Comment: 16 page

    Encoded Recoupling and Decoupling: An Alternative to Quantum Error Correcting Codes, Applied to Trapped Ion Quantum Computation

    Get PDF
    A recently developed theory for eliminating decoherence and design constraints in quantum computers, ``encoded recoupling and decoupling'', is shown to be fully compatible with a promising proposal for an architecture enabling scalable ion-trap quantum computation [D. Kielpinski et al., Nature 417, 709 (2002)]. Logical qubits are encoded into pairs of ions. Logic gates are implemented using the Sorensen-Molmer (SM) scheme applied to pairs of ions at a time. The encoding offers continuous protection against collective dephasing. Decoupling pulses, that are also implemented using the SM scheme directly to the encoded qubits, are capable of further reducing various other sources of qubit decoherence, such as due to differential dephasing and due to decohered vibrational modes. The feasibility of using the relatively slow SM pulses in a decoupling scheme quenching the latter source of decoherence follows from the observed 1/f spectrum of the vibrational bath.Comment: 12 pages, no figure

    Triply Threaded [4]Rotaxanes

    Get PDF
    [4]Rotaxanes featuring three axles threaded through a single ring have been prepared through active metal template synthesis. Nickel-catalyzed sp3-sp3 homocouplings of alkyl bromide ‘half threads’ through 37- and 38-membered 2,2':6',2"-terpyridyl macrocycles generates triply-threaded [4]rotaxanes in up to 11 % yield. An analogous 39-membered macrocycle produced no rotaxane products under similar conditions. The constitutions of the [4]rotaxanes were determined by NMR spectroscopy and mass spectrometry. Doubly-threaded [3]rotaxanes were also obtained from the reactions but no [2]rotaxanes were isolated, suggesting that upon demetallation the axle of a singly-threaded rotaxane can slip through a macrocycle that is sufficiently large to accommodate three threads

    One-Loop Maximal Helicity Violating Amplitudes in N=4 Super Yang-Mills Theories

    Full text link
    One-loop maximal helicity violating (MHV) amplitudes in N=4 super Yang-Mills (SYM) theories are analyzed, using the prescription of Cachazo, Svrcek, and Witten (CSW). The relations between leading N_c amplitudes A_{n;1} and sub-leading amplitudes A_{n;c} obtained by the CSW prescription are found to be identical to those obtained from conventional field theory calculations. Combining with existing results, this establishes the validity of the CSW prescription to one-loop in the calculation of MHV amplitudes in N=4 SYM theories of finite N_c.Comment: Minor changes and typos fixed. Published version in JHE

    Universal Quantum Computation using Exchange Interactions and Teleportation of Single-Qubit Operations

    Get PDF
    We show how to construct a universal set of quantum logic gates using control over exchange interactions and single- and two-spin measurements only. Single-spin unitary operations are teleported instead of being executed directly, thus eliminating a major difficulty in the construction of several of the most promising proposals for solid-state quantum computation, such as spin-coupled quantum dots, donor-atom nuclear spins in silicon, and electrons on helium. Contrary to previous proposals dealing with this difficulty, our scheme requires no encoding redundancy. We also discuss an application to superconducting phase qubits.Comment: 4.5 pages, including 2 figure

    Sources of CP Violation in the Two-Higgs Doublet Model

    Get PDF
    Assuming CP violation arises solely through the Higgs potential, we develop the most general two-Higgs doublet model. There is no discrete symmetry that distinguishes the two Higgs bosons. It is assumed that an approximate global family symmetry sufficiently suppresses flavor-changing neutral scalar interactions. In addition to a CKM phase, neutral boson mixing, and superweak effects, there can be significant CP violation due to charged Higgs boson exchange. The value of Ï”â€Č/Ï”\epsilon'/\epsilon due to this last effect could be as large as in the standard model.Comment: 8 pages, RevTex, (appear in Phys. Rev. Lett. 73, (1994) 1762 ), CMU-HEP94-1

    Dirac Equation at Finite Temperature

    Full text link
    In this paper, we propose finite temperature Dirac equation, which can describe the quantum systems in an arbitrary temperature for a relativistic particle of spin-1/2. When the temperature T=0, it become Dirac equation. With the equation, we can study the relativistic quantum systems in an arbitrary temperature.Comment: arXiv admin note: text overlap with arXiv:1005.2751, arXiv:hep-ph/0004125, arXiv:hep-ph/0005272 by other author

    Empirical Determination of Bang-Bang Operations

    Full text link
    Strong and fast "bang-bang" (BB) pulses have been recently proposed as a means for reducing decoherence in a quantum system. So far theoretical analysis of the BB technique relied on model Hamiltonians. Here we introduce a method for empirically determining the set of required BB pulses, that relies on quantum process tomography. In this manner an experimenter may tailor his or her BB pulses to the quantum system at hand, without having to assume a model Hamiltonian.Comment: 14 pages, 2 eps figures, ReVTeX4 two-colum

    Functional Brain Imaging with Multi-Objective Multi-Modal Evolutionary Optimization

    Get PDF
    Functional brain imaging is a source of spatio-temporal data mining problems. A new framework hybridizing multi-objective and multi-modal optimization is proposed to formalize these data mining problems, and addressed through Evolutionary Computation (EC). The merits of EC for spatio-temporal data mining are demonstrated as the approach facilitates the modelling of the experts' requirements, and flexibly accommodates their changing goals
    • 

    corecore