129 research outputs found

    Effects of Temperature and Moisture on Sheet Molding Compounds

    Full text link
    A summary is given on the effects of moisture and temperature on the properties of chopped fiber reinforced sheet molding compounds. The properties surveyed include tensile strength and modulus, compression strength and modulus, shear strength and modulus, flexural strength and modulus, fatigue, creep, vibration damping, moisture absorption characteristics, and thermal expansion.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68648/2/10.1177_073168448300200201.pd

    Environmental Effects on Glass Fiber Reinforced Polyester and Vinylester Composites

    Full text link
    The effects of environment on glass fiber reinforced polyester and vinylester composites immersed in liquids and in humid air were investi gated. Tests were performed at temperatures 23 C and 93 C with the materials exposed to humid air at 50 and 100 percent relative humidities, and to five different liquids: saturated salt water, No. 2 diesel fuel, lubrica ting oil, antifreeze, and indolene. Changes in weight, ultimate tensile strength, tensile modulus, short beam shear strength, and shear modulus were measured over a six month period, and the effects of the environment on these parameters were assessed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66642/2/10.1177_002199838001400304.pd

    Expansion in perfect groups

    Full text link
    Let Ga be a subgroup of GL_d(Q) generated by a finite symmetric set S. For an integer q, denote by Ga_q the subgroup of Ga consisting of the elements that project to the unit element mod q. We prove that the Cayley graphs of Ga/Ga_q with respect to the generating set S form a family of expanders when q ranges over square-free integers with large prime divisors if and only if the connected component of the Zariski-closure of Ga is perfect.Comment: 62 pages, no figures, revision based on referee's comments: new ideas are explained in more details in the introduction, typos corrected, results and proofs unchange

    An Oscillatory Contractile Pole-Force Component Dominates the Traction Forces Exerted by Migrating Amoeboid Cells

    Get PDF
    We used principal component analysis to dissect the mechanics of chemotaxis of amoeboid cells into a reduced set of dominant components of cellular traction forces and shape changes. The dominant traction force component in wild-type cells accounted for ~40% of the mechanical work performed by these cells, and consisted of the cell attaching at front and back contracting the substrate towards its centroid (pole-force). The time evolution of this pole-force component was responsible for the periodic variations of cell length and strain energy that the cells underwent during migration. We identified four additional canonical components, reproducible from cell to cell, overall accounting for an additional ~20% of mechanical work, and associated with events such as lateral protrusion of pseudopodia. We analyzed mutant strains with contractility defects to quantify the role that non-muscle Myosin II (MyoII) plays in amoeboid motility. In MyoII essential light chain null cells the polar-force component remained dominant. On the other hand, MyoII heavy chain null cells exhibited a different dominant traction force component, with a marked increase in lateral contractile forces, suggesting that cortical contractility and/or enhanced lateral adhesions are important for motility in this cell line. By compressing the mechanics of chemotaxing cells into a reduced set of temporally-resolved degrees of freedom, the present study may contribute to refined models of cell migration that incorporate cell-substrate interactions

    Milagro limits and HAWC sensitivity for the rate-density of evaporating Primordial Black Holes

    Get PDF
    postprin

    Progress towards ignition on the National Ignition Facility

    Full text link

    Phase Behavior of Aqueous Na-K-Mg-Ca-CI-NO3 Mixtures: Isopiestic Measurements and Thermodynamic Modeling

    Get PDF
    A comprehensive model has been established for calculating thermodynamic properties of multicomponent aqueous systems containing the Na{sup +}, K{sup +}, Mg{sup 2+}, Ca{sup 2+}, Cl{sup -}, and NO{sub 3}{sup -} ions. The thermodynamic framework is based on a previously developed model for mixed-solvent electrolyte solutions. The framework has been designed to reproduce the properties of salt solutions at temperatures ranging from the freezing point to 300 C and concentrations ranging from infinite dilution to the fused salt limit. The model has been parameterized using a combination of an extensive literature database and new isopiestic measurements for thirteen salt mixtures at 140 C. The measurements have been performed using Oak Ridge National Laboratory's (ORNL) previously designed gravimetric isopiestic apparatus, which makes it possible to detect solid phase precipitation. Water activities are reported for mixtures with a fixed ratio of salts as a function of the total apparent salt mole fraction. The isopiestic measurements reported here simultaneously reflect two fundamental properties of the system, i.e., the activity of water as a function of solution concentration and the occurrence of solid-liquid transitions. The thermodynamic model accurately reproduces the new isopiestic data as well as literature data for binary, ternary and higher-order subsystems. Because of its high accuracy in calculating vapor-liquid and solid-liquid equilibria, the model is suitable for studying deliquescence behavior of multicomponent salt systems
    • 

    corecore