197 research outputs found
Elastic neutron scattering in Quantum Critical Antiferromagnet CrV
We have performed elastic neutron scattering studies of the quantum critical
antiferromagnet CrV. We have found that unlike pure Cr,
which orders at two incommensurate wavevectors, CrV orders
at four incommensurate and one commensurate wavevectors. We have found strong
temperature dependent scattering at the commensurate and incommensurate
wavevectors below 250 K. Results indicate that the primary effect of V doping
on Cr is the modification of the nesting conditions of the Fermi surface and
not the decreasing of the Neel temperature.Comment: 2 pages, 2 figures, submitted to SCES07 (to be published in Physica
B), typos correcte
Probing momentum-dependent scattering in uniaxially stressed Sr2RuO4 through the Hall effect
Funding: The authors acknowledge the financial support of the Max Planck Society. A. P. M. and C. W. H. acknowledge the financial support of the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—TRR 288–422213477 (project A10). N. K. is supported by a KAKENHI Grants-in-Aids for Scientific Research (Grants No. 17H06136, No. 18K04715, and No. 21H01033), and Core-to-Core Program (No. JPJSCCA20170002) from the Japan Society for the Promotion of Science (JSPS) and by a JST-Mirai Program (Grant No. JPMJMI18A3). H. M. L. N. acknowledges support from the Alexander von Humboldt Foundation through a Research Fellowship for Postdoctoral Researchers. Research in Dresden benefits from the environment provided by the DFG Cluster of Excellence ct.qmat (EXC 2147, project ID 390858940).The largest Fermi surface sheet of the correlated metal Sr2RuO4 can be driven through a Lifshitz transition between an electronlike and an open geometry by uniaxial stress applied along the [100] lattice direction. Here, we investigate the effect of this transition on the longitudinal resistivity ρxx and the Hall coefficient RH. ρxx(T), when Sr2RuO4 is tuned to this transition, is found to have a T2logT form, as expected for a Fermi liquid tuned to a Lifshitz transition. RH is found to become more negative as the Fermi surface transitions from an electronlike to an open geometry, opposite to general expectations from this change in topology. The magnitude of the change in RH implies that scattering changes throughout the Brillouin zone, not just at the point in k space where the transition occurs. In a model of orbital-dependent scattering, the electron-electron scattering rate on sections of Fermi surface with xy orbital weight is found to decrease dramatically.Publisher PDFPeer reviewe
Frequency behavior of Raman coupling coefficient in glasses
Low-frequency Raman coupling coefficient of 11 different glasses is
evaluated. It is found that the coupling coefficient demonstrates a universal
linear frequency behavior near the boson peak maximum and a superlinear
behavior at very low frequencies. The last observation suggests vanishing of
the coupling coefficient when frequency tends to zero. The results are
discussed in terms of the vibration wavefunction that combines features of
localized and extended modes.Comment: 8 pages, 9 figure
Evolving networks with disadvantaged long-range connections
We consider a growing network, whose growth algorithm is based on the
preferential attachment typical for scale-free constructions, but where the
long-range bonds are disadvantaged. Thus, the probability to get connected to a
site at distance is proportional to , where is a
tunable parameter of the model. We show that the properties of the networks
grown with are close to those of the genuine scale-free
construction, while for the structure of the network is vastly
different. Thus, in this regime, the node degree distribution is no more a
power law, and it is well-represented by a stretched exponential. On the other
hand, the small-world property of the growing networks is preserved at all
values of .Comment: REVTeX, 6 pages, 5 figure
Recommended from our members
Normal State O 17 NMR Studies of Sr2RuO4 under Uniaxial Stress
The effects of uniaxial compressive stress on the normal state O17 nuclear-magnetic-resonance properties of the unconventional superconductor Sr2RuO4 are reported. The paramagnetic shifts of both planar and apical oxygen sites show pronounced anomalies near the nominal a-axis strain μaaμv that maximizes the superconducting transition temperature Tc. The spin susceptibility weakly increases on lowering the temperature below T≃10 K, consistent with an enhanced density of states associated with passing the Fermi energy through a van Hove singularity. Although such a Lifshitz transition occurs in the γ band formed by the Ru dxy states hybridized with in-plane O pπ orbitals, the large Hund's coupling renormalizes the uniform spin susceptibility, which, in turn, affects the hyperfine fields of all nuclei. We estimate this "Stoner" renormalization S by combining the data with first-principles calculations and conclude that this is an important part of the strain effect, with implications for superconductivity. © 2019 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the »https://creativecommons.org/licenses/by/4.0/» Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI
Biased diffusion in a piecewise linear random potential
We study the biased diffusion of particles moving in one direction under the
action of a constant force in the presence of a piecewise linear random
potential. Using the overdamped equation of motion, we represent the first and
second moments of the particle position as inverse Laplace transforms. By
applying to these transforms the ordinary and the modified Tauberian theorem,
we determine the short- and long-time behavior of the mean-square displacement
of particles. Our results show that while at short times the biased diffusion
is always ballistic, at long times it can be either normal or anomalous. We
formulate the conditions for normal and anomalous behavior and derive the laws
of biased diffusion in both these cases.Comment: 11 pages, 3 figure
Magnetic field induced softening of spin waves and hard axis order in the Kondo lattice ferromagnet CeAgSb2
A significant number of Kondo lattice ferromagnets order perpendicular to the easy magnetization axis dictated by the crystalline electric field. The nature of this phenomenon has attracted considerable attention, but remains poorly understood. In the present paper we use inelastic neutron scattering supported by magnetization and specific heat measurements to study the spin dynamics in the hard axis ferromagnet CeAgSb2. In the zero field state we observed two sharp magnon modes, which are associated with Ce ordering and extended up to amp; 8776;3 meV with a considerable spin gap of 0.6 meV. Application of a magnetic field perpendicular to the moment direction reduces the spectral intensity and suppresses the gap and significantly enhances the low temperature specific heat at a critical field of Bc amp; 8776;2.8 T via a mean field like transition. Above the transition, in the field polarized state, the gap eventually reopens due to the Zeeman effect. We modeled the observed dispersion using linear spin wave theory taking into account the ground state amp; 915;6 doublet and exchange anisotropy. Our model correctly captures the essential features of the spin dynamics including magnetic dispersion, distribution of the spectral intensity, as well as the field induced behavior, although several minor features remain obscure. The observed spectra do not show significant broadening due to the finite lifetime of the quasiparticles. Along with a moderate electronic specific heat coefficient amp; 947; 46 mJ mol K2 this indicates that the Kondo coupling is relatively weak and the Ce moments are well localized. Altogether, our results provide profound insight into the spin dynamics of the hard axis ferromagnet CeAgSb2 and can be used as solid ground for studying magnetic interactions in isostructural compounds including CeAuSb2, which exhibits nematicity and unusual mesoscale magnetic texture
Anomalous metamagnetism in the low carrier density Kondo lattice YbRh3Si7
We report complex metamagnetic transitions in single crystals of the new low
carrier Kondo antiferromagnet YbRh3Si7. Electrical transport, magnetization,
and specific heat measurements reveal antiferromagnetic order at T_N = 7.5 K.
Neutron diffraction measurements show that the magnetic ground state of
YbRh3Si7 is a collinear antiferromagnet where the moments are aligned in the ab
plane. With such an ordered state, no metamagnetic transitions are expected
when a magnetic field is applied along the c axis. It is therefore surprising
that high field magnetization, torque, and resistivity measurements with H||c
reveal two metamagnetic transitions at mu_0H_1 = 6.7 T and mu_0H_2 = 21 T. When
the field is tilted away from the c axis, towards the ab plane, both
metamagnetic transitions are shifted to higher fields. The first metamagnetic
transition leads to an abrupt increase in the electrical resistivity, while the
second transition is accompanied by a dramatic reduction in the electrical
resistivity. Thus, the magnetic and electronic degrees of freedom in YbRh3Si7
are strongly coupled. We discuss the origin of the anomalous metamagnetism and
conclude that it is related to competition between crystal electric field
anisotropy and anisotropic exchange interactions.Comment: 23 pages and 4 figures in the main text. 7 pages and 5 figures in the
supplementary materia
Correlations in Scale-Free Networks: Tomography and Percolation
We discuss three related models of scale-free networks with the same degree
distribution but different correlation properties. Starting from the
Barabasi-Albert construction based on growth and preferential attachment we
discuss two other networks emerging when randomizing it with respect to links
or nodes. We point out that the Barabasi-Albert model displays dissortative
behavior with respect to the nodes' degrees, while the node-randomized network
shows assortative mixing. These kinds of correlations are visualized by
discussig the shell structure of the networks around their arbitrary node. In
spite of different correlation behavior, all three constructions exhibit
similar percolation properties.Comment: 6 pages, 2 figures; added reference
Causality and dispersion relations and the role of the S-matrix in the ongoing research
The adaptation of the Kramers-Kronig dispersion relations to the causal
localization structure of QFT led to an important project in particle physics,
the only one with a successful closure. The same cannot be said about the
subsequent attempts to formulate particle physics as a pure S-matrix project.
The feasibility of a pure S-matrix approach are critically analyzed and their
serious shortcomings are highlighted. Whereas the conceptual/mathematical
demands of renormalized perturbation theory are modest and misunderstandings
could easily be corrected, the correct understanding about the origin of the
crossing property requires the use of the mathematical theory of modular
localization and its relation to the thermal KMS condition. These new concepts,
which combine localization, vacuum polarization and thermal properties under
the roof of modular theory, will be explained and their potential use in a new
constructive (nonperturbative) approach to QFT will be indicated. The S-matrix
still plays a predominant role but, different from Heisenberg's and
Mandelstam's proposals, the new project is not a pure S-matrix approach. The
S-matrix plays a new role as a "relative modular invariant"..Comment: 47 pages expansion of arguments and addition of references,
corrections of misprints and bad formulation
- …