2,218 research outputs found
A Statistical Study on Photospheric Magnetic Nonpotentiality of Active Regions and Its Relationship with Flares during Solar Cycles 22-23
A statistical study is carried out on the photospheric magnetic
nonpotentiality in solar active regions and its relationship with associated
flares. We select 2173 photospheric vector magnetograms from 1106 active
regions observed by the Solar Magnetic Field Telescope at Huairou Solar
Observing Station, National Astronomical Observatories of China, in the period
of 1988-2008, which covers most of the 22nd and 23rd solar cycles. We have
computed the mean planar magnetic shear angle (\bar{\Delta\phi}), mean shear
angle of the vector magnetic field (\bar{\Delta\psi}), mean absolute vertical
current density (\bar{|J_{z}|}), mean absolute current helicity density
(\bar{|h_{c}|}), absolute twist parameter (|\alpha_{av}|), mean free magnetic
energy density (\bar{\rho_{free}}), effective distance of the longitudinal
magnetic field (d_{E}), and modified effective distance (d_{Em}) of each
photospheric vector magnetogram. Parameters \bar{|h_{c}|}, \bar{\rho_{free}},
and d_{Em} show higher correlation with the evolution of the solar cycle. The
Pearson linear correlation coefficients between these three parameters and the
yearly mean sunspot number are all larger than 0.59. Parameters
\bar{\Delta\phi}, \bar{\Delta\psi}, \bar{|J_{z}|}, |\alpha_{av}|, and d_{E}
show only weak correlations with the solar cycle, though the nonpotentiality
and the complexity of active regions are greater in the activity maximum
periods than in the minimum periods. All of the eight parameters show positive
correlations with the flare productivity of active regions, and the combination
of different nonpotentiality parameters may be effective in predicting the
flaring probability of active regions.Comment: 20 pages, 5 figures, 4 tables, accepted for publication in Solar
Physic
Interacting agegraphic dark energy models in phase space
Agegraphic dark energy, has been recently proposed, based on the so-called
Karolyhazy uncertainty relation, which arises from quantum mechanics together
with general relativity. In the first part of the article we study the original
agegraphic dark energy model by including the interaction between agegraphic
dark energy and pressureless (dark) matter. The phase space analysis was made
and the critical points were found, one of which is the attractor corresponding
to an accelerated expanding Universe.
Recent observations of near supernova show that the acceleration of Universe
decreases. This phenomenon is called the transient acceleration. In the second
part of Article we consider the 3-component Universe composed of a scalar
field, interacting with the dark matter on the agegraphic dark energy
background. We show that the transient acceleration appears in frame of such a
model. The obtained results agree with the observations.Comment: 15 pages, 5 figures, 2 table
OpenFraming: we brought the ML; you bring the data. Interact with your data and discover its frames
When journalists cover a news story, they can cover the story from multiple angles or perspectives. A news article written about COVID-19 for example, might focus on personal preventative actions such as mask-wearing, while another might focus on COVID-19's impact on the economy. These perspectives are called "frames," which when used may influence public perception and opinion of the issue. We introduce a Web-based system for analyzing and classifying frames in text documents. Our goal is to make effective tools for automatic frame discovery and labeling based on topic modeling and deep learning widely accessible to researchers from a diverse array of disciplines. To this end, we provide both state-of-the-art pre-trained frame classification models on various issues as well as a user-friendly pipeline for training novel classification models on user-provided corpora. Researchers can submit their documents and obtain frames of the documents. The degree of user involvement is flexible: they can run models that have been pre-trained on select issues; submit labeled documents and train a new model for frame classification; or submit unlabeled documents and obtain potential frames of the documents. The code making up our system is also open-sourced and well-documented, making the system transparent and expandable. The system is available on-line at http://www.openframing.org and via our GitHub page https://github.com/davidatbu/openFraming .Published versio
Spin Glasses on Thin Graphs
In a recent paper we found strong evidence from simulations that the
Isingantiferromagnet on ``thin'' random graphs - Feynman diagrams - displayed
amean-field spin glass transition. The intrinsic interest of considering such
random graphs is that they give mean field results without long range
interactions or the drawbacks, arising from boundary problems, of the Bethe
lattice. In this paper we reprise the saddle point calculations for the Ising
and Potts ferromagnet, antiferromagnet and spin glass on Feynman diagrams. We
use standard results from bifurcation theory that enable us to treat an
arbitrary number of replicas and any quenched bond distribution. We note the
agreement between the ferromagnetic and spin glass transition temperatures thus
calculated and those derived by analogy with the Bethe lattice, or in previous
replica calculations. We then investigate numerically spin glasses with a plus
or minus J bond distribution for the Ising and Q=3,4,10,50 state Potts models,
paying particular attention to the independence of the spin glass transition
from the fraction of positive and negative bonds in the Ising case and the
qualitative form of the overlap distribution in all the models. The parallels
with infinite range spin glass models in both the analytical calculations and
simulations are pointed out.Comment: 13 pages of LaTex and 11 postscript figures bundled together with
uufiles. Discussion of first order transitions for three or more replicas
included and similarity to Ising replica magnet pointed out. Some additional
reference
Entangled state preparation via dissipation-assisted adiabatic passages
The main obstacle for coherent control of open quantum systems is decoherence
due to different dissipation channels and the inability to precisely control
experimental parameters. To overcome these problems we propose to use
dissipation-assisted adiabatic passages. These are relatively fast processes
where the presence of spontaneous decay rates corrects for errors due to
non-adiabaticity while the system remains in a decoherence-free state and
behaves as predicted for an adiabatic passage. As a concrete example we present
a scheme to entangle atoms by moving them in and out of an optical cavity.Comment: 11 pages, 7 figures, minor changes, accepted for publication in Phys.
Rev.
Topological Defects in the Random-Field XY Model and the Pinned Vortex Lattice to Vortex Glass Transition in Type-II Superconductors
As a simplified model of randomly pinned vortex lattices or charge-density
waves, we study the random-field XY model on square () and simple cubic
() lattices. We verify in Monte Carlo simulations, that the average
spacing between topological defects (vortices) diverges more strongly than the
Imry-Ma pinning length as the random field strength, , is reduced. We
suggest that for the simulation data are consistent with a topological
phase transition at a nonzero critical field, , to a pinned phase that is
defect-free at large length-scales. We also discuss the connection between the
possible existence of this phase transition in the random-field XY model and
the magnetic field driven transition from pinned vortex lattice to vortex glass
in weakly disordered type-II superconductors.Comment: LATEX file; 5 Postscript figures are available from [email protected]
Detecting new microRNAs in human osteoarthritic chondrocytes identifies miR-3085 as a human, chondrocyte-selective, microRNA
Objective: To use deep sequencing to identify novel microRNAs in human osteoarthritic cartilage which have a functional role in chondrocyte phenotype or function. Design: A small RNA library was prepared from human osteoarthritic primary chondrocytes using in-house adaptors and analysed by Illumina sequencing. Novel candidate microRNAs were validated by northern blot and qRT-PCR. Expression was measured in cartilage models. Targets of novel candidates were identified by microarray and computational analysis, validated using 3’-UTR-luciferase reporter plasmids. Protein levels were assessed by western blot and functional analysis by cell adhesion. Results: We identified 990 known microRNAs and 1621 potential novel microRNAs in human osteoarthritic chondrocytes, 60 of the latter were expressed in all samples assayed. MicroRNA-140-3p was the most highly expressed microRNA in osteoarthritic cartilage. Sixteen novel candidate microRNAs were analysed further, of which 6 remained after northern blot analysis. Three novel microRNAs were regulated across models of chondrogenesis, chondrocyte differentiation or cartilage injury. One sequence (novel #11), annotated in rodents as microRNA-3085-3p, was preferentially expressed in cartilage, dependent on chondrocyte differentiation and, in man, is located in an intron of the cartilage-expressed gene CRTAC-1. This microRNA was shown to target the ITGA5 gene directly (which encodes integrin alpha5) and inhibited adhesion to fibronectin (dependent on alpha5beta1 integrin). Conclusion: Deep sequencing has uncovered many potential microRNA candidates expressed in human cartilage. At least three of these show potential functional interest in cartilage homeostasis and osteoarthritis. Particularly, novel #11 (microRNA-3085-3p) which has been identified for the first time in man
A geometric description of the non-Gaussianity generated at the end of multi-field inflation
In this paper we mainly focus on the curvature perturbation generated at the
end of multi-field inflation, such as the multi-brid inflation. Since the
curvature perturbation is produced on the super-horizon scale, the bispectrum
and trispectrum have a local shape. The size of bispectrum is measured by
and the trispectrum is characterized by two parameters and
. For simplicity, the trajectory of inflaton is assumed to be a
straight line in the field space and then the entropic perturbations do not
contribute to the curvature perturbation during inflation. As long as the
background inflaton path is not orthogonal to the hyper-surface for inflation
to end, the entropic perturbation can make a contribution to the curvature
perturbation at the end of inflation and a large local-type non-Gaussiantiy is
expected. An interesting thing is that the non-Gaussianity parameters are
completely determined by the geometric properties of the hyper-surface of the
end of inflation. For example, is proportional to the curvature of the
curve on this hyper-surface along the adiabatic direction and is
related to the change of the curvature radius per unit arc-length of this
curve. Both and can be positive or negative respectively, but
must be positive and not less than .Comment: 19 pages, 4 figures; refs added; a correction to \tau_{NL} for
n-field inflation added, version accepted for publication in JCA
Disorder Induced Phase Transition in a Random Quantum Antiferromagnet
A two-dimensional Heisenberg model with random antiferromagnetic
nearest-neighbor exchange is studied using quantum Monte Carlo techniques. As
the strength of the randomness is increased, the system undergoes a transition
from an antiferromagnetically ordered ground state to a gapless disordered
state. The finite-size scaling of the staggered structure factor and
susceptibility is consistent with a dynamic exponent .Comment: Revtex 3.0, 10 pages + 5 postscript figures available upon request,
UCSBTH-94-1
- …