32 research outputs found

    The molecular condensations ahead of Herbig-Haro objects. II: a theoretical investigation of the HH 2 condensation

    Get PDF
    Clumps of enhanced molecular emission are present close to a number of Herbig-Haro (HH) objects. These enhancements may be the consequence of an active photochemistry driven by the UV radiation originating from the shock front of the HH object. On the basis of this picture and as a follow up to a molecular line survey toward the quiescent molecular clump ahead of the HH object, HH 2 (Girart et al. 2002), we present a detailed time and depth dependent chemical model of the observed clump. Despite several difficulties in matching the observations, we constrain some of the physical and chemical parameters of the clump ahead of HH 2. In particular, we find that the clump is best described by more than one density component with a peak density of 3 × 105 cm-3 and a visual extinction of ≀3.5 mag; its lifetime can not be much higher than 100 years and the impinging radiation is enhanced with respect to the ambient one by probably no more than 3 orders of magnitude. Our models also indicate that carbon-bearing species should not completely hydrogenate as methane when freezing out on grains during the formation of the clump

    Grain Surface Models and Data for Astrochemistry

    Get PDF
    AbstractThe cross-disciplinary field of astrochemistry exists to understand the formation, destruction, and survival of molecules in astrophysical environments. Molecules in space are synthesized via a large variety of gas-phase reactions, and reactions on dust-grain surfaces, where the surface acts as a catalyst. A broad consensus has been reached in the astrochemistry community on how to suitably treat gas-phase processes in models, and also on how to present the necessary reaction data in databases; however, no such consensus has yet been reached for grain-surface processes. A team of ∌25 experts covering observational, laboratory and theoretical (astro)chemistry met in summer of 2014 at the Lorentz Center in Leiden with the aim to provide solutions for this problem and to review the current state-of-the-art of grain surface models, both in terms of technical implementation into models as well as the most up-to-date information available from experiments and chemical computations. This review builds on the results of this workshop and gives an outlook for future directions

    Hierarchy of Scales in Language Dynamics

    Get PDF
    Methods and insights from statistical physics are finding an increasing variety of applications where one seeks to understand the emergent properties of a complex interacting system. One such area concerns the dynamics of language at a variety of levels of description, from the behaviour of individual agents learning simple artificial languages from each other, up to changes in the structure of languages shared by large groups of speakers over historical timescales. In this Colloquium, we survey a hierarchy of scales at which language and linguistic behaviour can be described, along with the main progress in understanding that has been made at each of them − much of which has come from the statistical physics community. We argue that future developments may arise by linking the different levels of the hierarchy together in a more coherent fashion, in particular where this allows more effective use of rich empirical data sets
    corecore