55 research outputs found

    Barrett’s Esophagus: a Molecular Characterization

    Get PDF
    Barrett’s esophagus is a premalignant condition that is most likely caused by gastroesophageal reflux. In the western world, about 30% of adults have reflux complaints, such as heartburn, and about 10% of reflux patients will develop Barrett’s esophagus [1]. Barrett’s esophagus is characterized by chronic inflammation, and like other chronic inflammatory lesions, it is associated with cancer development. Patients with Barrett’s esophagus have a 30 times increased risk for the development of esophageal adenocarcinoma compared to the general population. Barrett’s esophagus can progress to esophageal adenocarcinoma through the intermediate stages low-grade dysplasia and high-grade dysplasia [3]. Esophageal adenocarcinoma has a poor prognosis, the overall survival is only 15-20%

    Does CDX2 expression predict Barrett's metaplasia in oesophageal columnar epithelium without goblet cells?

    Get PDF
    Background: Intestinal metaplasia (Barrett's oesophagus), but not cardiac-type mucosa in columnar-lined oesophagus, is regarded as premalignant. As intestinal metaplasia and cardiac-type mucosa are endoscopically indiscernible, it is difficult to take targeted samples from columnar-lined oesophagus with consequently a risk of having undetected intestinal metaplasia. Aim: To investigate whether the intestinal markers CDX2, MUC2 and villin can predict the presence of undetected intestinal metaplasia in columnar-lined oesophagus. Methods: Presence of intestinal metaplasia or cardiac-type mucosa was identified in 122 biopsy sets of columnar-lined oesophagus from 61 patients, collected at two subsequent follow-up upper endoscopies. CDX2, MUC2 and villin expression were determined by immunohistochemistry. Results: All intestinal metaplasia samples (55) were positive for CDX2 and MUC2 and 32 of 55 for vil

    Role of the rdxA and frxA genes in oxygen-dependent metronidazole resistance of Helicobacter pylori

    Get PDF
    Almost 50 % of all Helicobacter pylori isolates are resistant to metronidazole, which reduces the efficacy of metronidazole-containing regimens, but does not make them completely ineffective. This discrepancy between in vitro metronidazole resistance and treatment outcome may partially be explained by changes in oxygen pressure in the gastric environment, as metronidazole-resistant (MtzR) H. pylori isolates become metronidazole-susceptible (MtzS) under low oxygen conditions in vitro. In H. pylori the rdxA and frxA genes encode reductases which are required for the activation of metronidazole, and inactivation of these genes results in metronidazole resistance. Here the role of inactivating mutations in these genes on the reversibility of metronidazole resistance under low oxygen conditions is established. Clinical H. pylori isolates containing mutations resulting in a truncated RdxA and/or FrxA protein were selected and incubated under anaerobic conditions, and the effect of these conditions on the MICs of metronidazole, amoxycillin, clarithromycin and tetracycline, and cell viability were determined. While anaerobiosis had no effect on amoxycillin, clarithromycin and tetracycline resistance, all isolates lost their metronidazole resistance when cultured under anaerobic conditions. This loss of metronidazole resistance also occurred in the presence of the protein synthesis inhibitor chloramphenicol. Thus, factor(s) that activate metronidazole under low oxygen tension are not specifically induced by low oxygen conditions, but are already present under microaerophilic conditions. As there were no significant differences in cell viability between the clinical isolates, it is likely that neither the rdxA nor the frxA gene participates in the reversibility of metronidazole resistance

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    Background: Many patients with COVID-19 have been treated with plasma containing anti-SARS-CoV-2 antibodies. We aimed to evaluate the safety and efficacy of convalescent plasma therapy in patients admitted to hospital with COVID-19. Methods: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]) is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. The trial is underway at 177 NHS hospitals from across the UK. Eligible and consenting patients were randomly assigned (1:1) to receive either usual care alone (usual care group) or usual care plus high-titre convalescent plasma (convalescent plasma group). The primary outcome was 28-day mortality, analysed on an intention-to-treat basis. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936. Findings: Between May 28, 2020, and Jan 15, 2021, 11558 (71%) of 16287 patients enrolled in RECOVERY were eligible to receive convalescent plasma and were assigned to either the convalescent plasma group or the usual care group. There was no significant difference in 28-day mortality between the two groups: 1399 (24%) of 5795 patients in the convalescent plasma group and 1408 (24%) of 5763 patients in the usual care group died within 28 days (rate ratio 1·00, 95% CI 0·93–1·07; p=0·95). The 28-day mortality rate ratio was similar in all prespecified subgroups of patients, including in those patients without detectable SARS-CoV-2 antibodies at randomisation. Allocation to convalescent plasma had no significant effect on the proportion of patients discharged from hospital within 28 days (3832 [66%] patients in the convalescent plasma group vs 3822 [66%] patients in the usual care group; rate ratio 0·99, 95% CI 0·94–1·03; p=0·57). Among those not on invasive mechanical ventilation at randomisation, there was no significant difference in the proportion of patients meeting the composite endpoint of progression to invasive mechanical ventilation or death (1568 [29%] of 5493 patients in the convalescent plasma group vs 1568 [29%] of 5448 patients in the usual care group; rate ratio 0·99, 95% CI 0·93–1·05; p=0·79). Interpretation: In patients hospitalised with COVID-19, high-titre convalescent plasma did not improve survival or other prespecified clinical outcomes. Funding: UK Research and Innovation (Medical Research Council) and National Institute of Health Research

    Barbarization processes in a Bosnian rural community

    No full text

    Australasian pilchard mortalities

    No full text
    A large-scale epizootic occurred in the Australasian pilchard Sardinops sagax between March and September 1995. The deaths occurred along 5000km of the Australian coastline and 500km of the New Zealand coastline. Affected fish died within a few minutes of clinical signs of respiratory distress and death was associated with hypoxaemia and hypercapnia. Significant lesions were confined to the gills and comprised acute to subacute inflammation followed by epithelial hypertrophy and hyperplasia. The lesions were initially focal but progressed to become generalized over about 4days. Only a herpesvirus was consistently present in gills of affected fish and absent from unaffected pilchards. There was no correlation with oceanographic conditions or the presence of plankton. The rate of spread of the mortality front (approximately 30km/day) in relation to the migration rate of pilchards and prevailing currents suggested that a vector might be involved. The disease may be the result of a virus introduced into Australian waters, or of a newly emerged virus

    New variant and expression studies provide further insight into the genotype-phenotype correlation in YAP1-related developmental eye disorders

    No full text
    YAP1, which encodes the Yes-associated protein 1, is part of the Hippo pathway involved in development, growth, repair and homeostasis. Nonsense YAP1 mutations have been shown to co-segregate with autosomal dominantly inherited coloboma. Therefore, we screened YAP1 for variants in a cohort of 258 undiagnosed UK patients with developmental eye disorders, including anophthalmia, microphthalmia and coloboma. We identified a novel 1 bp deletion in YAP1 in a boy with bilateral microphthalmia and bilateral chorioretinal coloboma. This variant is located in the coding region of all nine YAP1 spliceforms, and results in a frameshift and subsequent premature termination codon in each. The variant is predicted to result in the loss of part of the transactivation domain of YAP1, and sequencing of cDNA from the patient shows it does not result in nonsense mediated decay. To investigate the role of YAP1 in human eye development, we performed in situ hybridisation utilising human embryonic tissue, and observed expression in the developing eye, neural tube, brain and kidney. These findings help confirm the role of YAP1 and the Hippo developmental pathway in human eye development and its associated anomalies and demonstrate its expression during development in affected organ systems

    Fourth universal definition of myocardial infarction (2018)

    No full text
    Contains fulltext : 202657.pdf (publisher's version ) (Closed access
    • …
    corecore