35 research outputs found

    Quantum statistical effects in nano-oscillator arrays

    Full text link
    We have theoretically predicted the density of states(DOS), the low temperature specific heat, and Brillouin scattering spectra of a large, free standing array of coupled nano-oscillators. We have found significant gaps in the DOS of 2D elastic systems, and predict the average DOS to be nearly independent of frequency over a broad band f < 50GHz. At low temperatures, the measurements probe the quantum statistics obeyed by rigid body modes of the array and, thus, could be used to verify the quantization of the associated energy levels. These states, in turn, involve center-of mass motion of large numbers of atoms, N > 1.e14, and therefore such observations would extend the domain in which quantum mechanics has been experimentally tested. We have found the required measurement capability to carry out this investigation to be within reach of current technology.Comment: 1 tex file, 3 figures, 1 bbl fil

    Relativistic and Binding Energy Corrections to Direct Photon Production In Upsilon Decay

    Get PDF
    A systematic gauge-invariant method is used to calculate the rate for an upsilon meson to decay inclusively into a prompt photon. An expansion is made in the quark relative velocity v, which is a small natural parameter for heavy quark systems. Inclusion of these O(v^2) corrections tends to increase the photon rate in the middle z range and to lower it for larger z, a feature supported by the data.Comment: 13 pages, LateX, One figure (to be published in Phys. Rev. D, Sept. 1, 1996

    Kinematic Effects in Radiative Quarkonia Decays

    Get PDF
    Non-relativistic QCD (NRQCD) predicts colour octet contributions to be significant not only in many production processes of heavy quarkonia but also in their radiative decays. We investigate the photon energy distributions in these processes in the endpoint region. There the velocity expansion of NRQCD breaks down which requires a resummation of an infinite class of colour octet operators to so-called shape functions. We model these non-perturbative functions by the emission of a soft gluon cluster in the initial state. We found that the spectrum in the endpoint region is poorly understood if the values for the colour octet matrix elements are taken as large as indicated from NRQCD scaling rules. Therefore the endpoint region should not be taken into account for a fit of the strong coupling constant at the scale of the heavy quark mass.Comment: LaTeX, 17 pages, 5 figures. The complete paper is also available via the www at http://www-ttp.physik.uni-karlsruhe.de/Preprints

    Voltage Responses to Optical Pulses of Unbiased Normal and Superconducting Samples

    Get PDF
    The direct transformation of the energy of an incident high-energy photon into a measurable potential difference within an absorbing metal is investigated. Experimental evidence is presented that the effect arises from the inherent energy dependence of the electronic density of states, rather than from a simple temperature excursion. The similarities between the results on Al and YBa2Cu3O7 samples indicate that the effect is universal in nature. We assert it may be used as the basis of a fast, energy resolving, individual photon detector for the ultraviolet radiation and x-rays

    Convergence and Gauge Dependence Properties of the Resummed One-loop Quark-Quark Scattering Amplitude in Perturbative QCD

    Full text link
    The one-loop QCD effective charge αseff\alpha_s^{eff} for quark-quark scattering is derived by diagrammatic resummation of the one-loop amplitude using an arbitary covariant gauge. Except for the particular choice of gauge parameter ξ=3\xi = -3, αseff\alpha_s^{eff} is found to {\it increase} with increasing physical scale, QQ, as lnQ\ln Q or ln2Q\ln^2 Q. For ξ=3\xi = -3, αseff\alpha_s^{eff} decreases with increasing QQ and satisfies a renormalisation group equation. Also, except for the case ξ=19/9\xi = 19/9, convergence radii of geometric series are found to impose upper limits on QQ.Comment: 28 pages, 5 tables, 5 figures. v3 The one-loop amplitudes in Section 2 are recalculated using dimensional regularisation, and several errors in the on-shell calculation of Reference[1] are pointed out. v4 one figure removed one added. Three tables and new text in Section 5 added. Published versio

    QCD Multipole Expansion and Hadronic Transitions in Heavy Quarkonium Systems

    Full text link
    We review the developments of QCD multipole expansion and its applications to hadronic transitions and some radiative decays of heavy quarkonia. Theoretical predictions are compsred with updated experimental results.Comment: 23 pages, 7 figures. Some typos corrected, and 3 references adde

    Minimization of phonon-tunneling dissipation in mechanical resonators

    Get PDF
    Micro- and nanoscale mechanical resonators have recently emerged as ubiquitous devices for use in advanced technological applications, for example in mobile communications and inertial sensors, and as novel tools for fundamental scientific endeavors. Their performance is in many cases limited by the deleterious effects of mechanical damping. Here, we report a significant advancement towards understanding and controlling support-induced losses in generic mechanical resonators. We begin by introducing an efficient numerical solver, based on the "phonon-tunneling" approach, capable of predicting the design-limited damping of high-quality mechanical resonators. Further, through careful device engineering, we isolate support-induced losses and perform the first rigorous experimental test of the strong geometric dependence of this loss mechanism. Our results are in excellent agreement with theory, demonstrating the predictive power of our approach. In combination with recent progress on complementary dissipation mechanisms, our phonon-tunneling solver represents a major step towards accurate prediction of the mechanical quality factor.Comment: 12 pages, 4 figure

    Soft, collinear and non-relativistic modes in radiative decays of very heavy quarkonium

    Get PDF
    We analyze the end-point region of the photon spectrum in semi-inclusive radiative decays of very heavy quarkonium (m alpha_s^2 >> Lambda_QCD). We discuss the interplay of the scales arising in the Soft-Collinear Effective Theory, m, m(1-z)^{1/2} and m(1-z) for z close to 1, with the scales of heavy quarkonium systems in the weak coupling regime, m, m alpha_s and m alpha_s^2. For 1-z \sim alpha_s^2 only collinear and (ultra)soft modes are seen to be relevant, but the recently discovered soft-collinear modes show up for 1-z << alpha_s^2. The S- and P-wave octet shape functions are calculated. When they are included in the analysis of the photon spectrum of the Upsilon (1S) system, the agreement with data in the end-point region becomes excellent. The NRQCD matrix elements and are also obtained.Comment: Revtex, 11 pages, 6 figures. Minor improvements and references added. Journal versio

    Effective field theories for heavy quarkonium

    Get PDF
    We review recent theoretical developments in heavy quarkonium physics from the point of view of Effective Field Theories of QCD. We discuss Non-Relativistic QCD and concentrate on potential Non-Relativistic QCD. Our main goal will be to derive QCD Schr\"odinger-like equations that govern the heavy quarkonium physics in the weak and strong coupling regime. We also discuss a selected set of applications, which include spectroscopy, inclusive decays and electromagnetic threshold production.Comment: 162 pages, 30 figures, revised version, references added. Accepted for publication in Reviews of Modern Physic

    A Phenomenological Analysis of Gluon Mass Effects in Inclusive Radiative Decays of the J/ψ\rm{J/\psi} and $\Upsilon

    Full text link
    The shapes of the inclusive photon spectra in the processes \Jp \to \gamma X and \Up \to \gamma X have been analysed using all available experimental data. Relativistic, higher order QCD and gluon mass corrections were taken into account in the fitted functions. Only on including the gluon mass corrections, were consistent and acceptable fits obtained. Values of 0.7210.068+0.0160.721^{+0.016}_{-0.068} GeV and 1.180.29+0.091.18^{+0.09}_{-0.29} GeV were found for the effective gluon masses (corresponding to Born level diagrams) for the \Jp and \Up respectively. The width ratios \Gamma(V \to {\rm hadrons})/\Gamma(V \to \gamma+ {\rm hadrons}) V=\Jp, \Up were used to determine αs(1.5GeV)\alpha_s(1.5 {\rm GeV}) and αs(4.9GeV)\alpha_s(4.9 {\rm GeV}). Values consistent with the current world average αs\alpha_s were obtained only when gluon mass correction factors, calculated using the fitted values of the effective gluon mass, were applied. A gluon mass 1\simeq 1 GeV, as suggested with these results, is consistent with previous analytical theoretical calculations and independent phenomenological estimates, as well as with a recent, more accurate, lattice calculation of the gluon propagator in the infra-red region.Comment: 50 pages, 11 figures, 15 table
    corecore