46,661 research outputs found

    R-matrix Approach to Quantum Superalgebras su_{q}(m|n)

    Full text link
    Quantum superalgebras suq(m∣n)su_{q}(m\mid n) are studied in the framework of RR-matrix formalism. Explicit parametrization of L(+)L^{(+)} and L(−)L^{(-)} matrices in terms of suq(m∣n)su_{q}(m\mid n) generators are presented. We also show that quantum deformation of nonsimple superalgebra su(n∣n)su(n\mid n) requires its extension to u(n∣n)u(n\mid n).Comment: 14 page

    The effect of barriers on wave propagation phenomena: With application for aircraft noise shielding

    Get PDF
    The frequency spectrum was divided into high and low frequency regimes and two separate methods were developed and applied to account for physical factors associated with flight conditions. For long wave propagation, the acoustic filed due to a point source near a solid obstacle was treated in terms of an inner region which where the fluid motion is essentially incompressible, and an outer region which is a linear acoustic field generated by hydrodynamic disturbances in the inner region. This method was applied to a case of a finite slotted plate modelled to represent a wing extended flap for both stationary and moving media. Ray acoustics, the Kirchhoff integral formulation, and the stationary phase approximation were combined to study short wave length propagation in many limiting cases as well as in the case of a semi-infinite plate in a uniform flow velocity with a point source above the plate and embedded in a different flow velocity to simulate an engine exhaust jet stream surrounding the source

    Origin of spin reorientation transitions in antiferromagnetic MnPt-based alloys

    Get PDF
    Antiferromagnetic MnPt exhibits a spin reorientation transition (SRT) as a function of temperature, and off-stoichiometric Mn-Pt alloys also display SRTs as a function of concentration. The magnetocrystalline anisotropy in these alloys is studied using first-principles calculations based on the coherent potential approximation and the disordered local moment method. The anisotropy is fairly small and sensitive to the variations in composition and temperature due to the cancellation of large contributions from different parts of the Brillouin zone. Concentration and temperature-driven SRTs are found in reasonable agreement with experimental data. Contributions from specific band-structure features are identified and used to explain the origin of the SRTs.Comment: 6 pages, 8 figure

    Exposing the dressed quark's mass

    Full text link
    This snapshot of recent progress in hadron physics made in connection with QCD's Dyson-Schwinger equations includes: a perspective on confinement and dynamical chiral symmetry breaking (DCSB); a pre'cis on the physics of in-hadron condensates; results on the hadron spectrum, including dressed-quark-core masses for the nucleon and Delta, their first radial excitations, and the parity-partners of these states; an illustration of the impact of DCSB on the electromagnetic pion form factor, thereby exemplifying how data can be used to chart the momentum-dependence of the dressed-quark mass function; and a prediction that F_1^{p,d}/F_1^{p,u} passes through zero at Q^2\approx 5m_N^2 owing to the presence of nonpointlike scalar and axial-vector diquark correlations in the nucleon.Comment: 10 pages, 4 figures, 2 tables. Contribution to the Proceedings of the 4th Workshop on Exclusive Reactions at High Momentum Transfer, Thomas Jefferson National Accelerator Facility Newport News, Virginia, 18-21 May 201
    • …
    corecore