100,498 research outputs found

    On the massive gluon propagator, the PT-BFM scheme and the low-momentum behaviour of decoupling and scaling DSE solutions

    Get PDF
    We study the low-momentum behaviour of Yang-Mills propagators obtained from Landau-gauge Dyson-Schwinger equations (DSE) in the PT-BFM scheme. We compare the ghost propagator numerical results with the analytical ones obtained by analyzing the low-momentum behaviour of the ghost propagator DSE in Landau gauge, assuming for the truncation a constant ghost-gluon vertex and a simple model for a massive gluon propagator. The asymptotic expression obtained for the regular or decoupling ghost dressing function up to the order O(q2){\cal O}(q^2) is proven to fit pretty well the numerical PT-BFM results. Furthermore, when the size of the coupling renormalized at some scale approaches some critical value, the numerical PT-BFM propagators tend to behave as the scaling ones. We also show that the scaling solution, implying a diverging ghost dressing function, cannot be a DSE solution in the PT-BFM scheme but an unattainable limiting case.Comment: 16 pages, 2 figs., 2 tabs (updated version to be published in JHEP

    The role of wind gusts in upper ocean diurnal variability

    Get PDF
    Upper ocean processes play a key role in air-sea coupling, with variability on both short and long time scales. The diurnal cycle associated with diurnal solar insolation and nighttime cooling, may act, along with stochastic wind variability, on upper ocean temperatures and stratification resulting in a diurnal warm layer and a nonlinear rectified effect on longer time scales. This study describes diurnal changes in upper ocean temperature for a location in the equatorial Indian Ocean, using observations from the Dynamics of the Madden-Julian Oscillation field campaign, a high vertical resolution 1-D process model, and a diurnal cycling scheme. Solar forcing is the main driver of diurnal variability in upper ocean temperature and stratification. Yet except during nighttime convection, winds with variability on the order of hours (here referred to as “wind gusts”) regulate how fast surface water is mixed to greater depths when daily mean winds are weak. Wind gusts are much stronger than diurnal winds. Even using stochastic wind gusts but no diurnal winds as input in a 1-D process model yields an estimate of diurnal temperature that compares well with observations. A new version of the Large and Caron (2015) scheme (LC2015) provides an estimate of upper ocean diurnal temperature that is consistent with observations. LC2015 has the advantage of being suitable for implementation in a climate model, with the goal to improve SST estimates, hence the simulated heat flux at the air-sea interface. Yet LC2015 is not very sensitive to the inclusion or omission of the high-frequency component of the wind

    Evaluation of a commercially available rapid urinary porphobilinogen test

    Get PDF
    Background: Demonstration of substantially increased urinary excretion of porphobilinogen is the cornerstone of diagnosing acute porphyria crisis. Because porphobilinogen testing is not implemented on clinical chemistry analysers, respective analyses are available in rather few clinical laboratories. The aim of this study was to critically describe and to evaluate a semi-quantitative rapid test for urinary porphobilinogen determination which is commercially available and recommended by the American Porphyria Foundation. Methods: Urinary samples from patients with acute intermittent porphyria and control samples were analysed and the semi-quantitative results were compared with the results obtained by a manual quantitative spectrophotometric method. Results: In all 32 samples studied, acceptable agreement between the results of the rapid test and the quantitative test was observed. Handling of the test was found to be convenient. Conclusions: The assay was found to be reliable and has the potential to increase the availability of porphobilinogen testing in the field

    Expansionism, Extremism and Exceptionalism in Life: Boltzmann Brains as trans-disciplinary methodology

    Get PDF
    This article explores how taking physical cosmology and the entities that populate its fringes on their own terms might prompt anthropology to rethink what and how it thinks of life. Physical cosmologists work with inanimate matter that lies at the frontier of existential possibility, positing scales and concepts that seem to negate commonsense notions of life and nonlife. Although a common reaction in anthropology when faced with such infinite, nonhuman, and abstract landscapes is to try to crowbar “everyday life” back in, we argue that conceptual space needs to be made for another style of engagement between anthropology and physical cosmology. Taking the Boltzmann Brain as an example of life not only beyond the human but also beyond life as we know it, we start to flesh out a different sort of speculative, transdisciplinary endeavor

    A Rule-Based Approach to Analyzing Database Schema Objects with Datalog

    Full text link
    Database schema elements such as tables, views, triggers and functions are typically defined with many interrelationships. In order to support database users in understanding a given schema, a rule-based approach for analyzing the respective dependencies is proposed using Datalog expressions. We show that many interesting properties of schema elements can be systematically determined this way. The expressiveness of the proposed analysis is exemplarily shown with the problem of computing induced functional dependencies for derived relations. The propagation of functional dependencies plays an important role in data integration and query optimization but represents an undecidable problem in general. And yet, our rule-based analysis covers all relational operators as well as linear recursive expressions in a systematic way showing the depth of analysis possible by our proposal. The analysis of functional dependencies is well-integrated in a uniform approach to analyzing dependencies between schema elements in general.Comment: Pre-proceedings paper presented at the 27th International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2017), Namur, Belgium, 10-12 October 2017 (arXiv:1708.07854

    Simulating the Hot X-ray Emitting Gas in Elliptical Galaxies

    Get PDF
    We study the chemo-dynamical evolution of elliptical galaxies and their hot X-ray emitting gas using high-resolution cosmological simulations. Our Tree N-body/SPH code includes a self-consistent treatment of radiative cooling, star formation, supernovae feedback, and chemical enrichment. We present a series of LCDM cosmological simulations which trace the spatial and temporal evolution of heavy element abundance patterns in both the stellar and gas components of galaxies. X-ray spectra of the hot gas are constructed via the use of the vmekal plasma model, and analysed using XSPEC with the XMM EPN response function. Simulation end-products are quantitatively compared with the observational data in both the X-ray and optical regime. We find that radiative cooling is important to interpret the observed X-ray luminosity, temperature, and metallicity of the interstellar medium of elliptical galaxies. However, this cooled gas also leads to excessive star formation at low redshift, and therefore results in underlying galactic stellar populations which are too blue with respect to observations.Comment: 6 pages, 3 figures, to appear in the proceedings of "The IGM/Galaxy Connection - The Distribution of Baryons at z=0", ed. M. Putman & J. Rosenberg; High resolution version is available at http://astronomy.swin.edu.au/staff/dkawata/research/papers.htm

    Dynamics on the Way to Forming Glass: Bubbles in Space-time

    Full text link
    We review a theoretical perspective of the dynamics of glass forming liquids and the glass transition. It is a perspective we have developed with our collaborators during this decade. It is based upon the structure of trajectory space. This structure emerges from spatial correlations of dynamics that appear in disordered systems as they approach non-ergodic or jammed states. It is characterized in terms of dynamical heterogeneity, facilitation and excitation lines. These features are associated with a newly discovered class of non-equilibrium phase transitions. Equilibrium properties have little if anything to do with it. The broken symmetries of these transitions are obscure or absent in spatial structures, but they are vivid in space-time (i.e., trajectory space). In our view, the glass transition is an example of this class of transitions. The basic ideas and principles we review were originally developed through the analysis of idealized and abstract models. Nevertheless, the central ideas are easily illustrated with reference to molecular dynamics of more realistic atomistic models, and we use that illustrative approach here.Comment: 21 pages, 8 figures. Submitted to Annu. Rev. Phys. Che

    Random input helps searching predecessors

    Get PDF
    A data structure problem consists of the finite sets: D of data, Q of queries, A of query answers, associated with a function f: D x Q → A. The data structure of file X is "static" ("dynamic") if we "do not" ("do") require quick updates as X changes. An important goal is to compactly encode a file X ϵ D, such that for each query y ϵ Q, function f (X, y) requires the minimum time to compute an answer in A. This goal is trivial if the size of D is large, since for each query y ϵ Q, it was shown that f(X,y) requires O(1) time for the most important queries in the literature. Hence, this goal becomes interesting to study as a trade off between the "storage space" and the "query time", both measured as functions of the file size n = \X\. The ideal solution would be to use linear O(n) = O(\X\) space, while retaining a constant O(1) query time. However, if f (X, y) computes the static predecessor search (find largest x ϵ X: x ≤ y), then Ajtai [Ajt88] proved a negative result. By using just n0(1) = [IX]0(1) data space, then it is not possible to evaluate f(X,y) in O(1) time Ay ϵ Q. The proof exhibited a bad distribution of data D, such that Ey∗ ϵ Q (a "difficult" query y∗), that f(X,y∗) requires ω(1) time. Essentially [Ajt88] is an existential result, resolving the worst case scenario. But, [Ajt88] left open the question: do we typically, that is, with high probability (w.h.p.)1 encounter such "difficult" queries y ϵ Q, when assuming reasonable distributions with respect to (w.r.t.) queries and data? Below we make reasonable assumptions w.r.t. the distribution of the queries y ϵ Q, as well as w.r.t. the distribution of data X ϵ D. In two interesting scenarios studied in the literature, we resolve the typical (w.h.p.) query time
    corecore