346 research outputs found

    Excitonic pairing between nodal fermions

    Get PDF
    We study excitonic pairing in nodal fermion systems characterized by a vanishing quasiparticle density of states at the pointlike Fermi surface and a concomitant lack of screening for long-range interactions. By solving the gap equation for the excitonic order parameter, we obtain a critical value of the interaction strength for a variety of power-law interactions and densities of states. We compute the free energy and analyze possible phase transitions, thus shedding further light on the unusual pairing properties of this peculiar class of strongly correlated systems.Comment: 9 pages, 7 figures, minor revisions made, final versio

    Linear independence of localized magnon states

    Full text link
    At the magnetic saturation field, certain frustrated lattices have a class of states known as "localized multi-magnon states" as exact ground states. The number of these states scales exponentially with the number NN of spins and hence they have a finite entropy also in the thermodynamic limit NN\to \infty provided they are sufficiently linearly independent. In this article we present rigorous results concerning the linear dependence or independence of localized magnon states and investigate special examples. For large classes of spin lattices including what we called the orthogonal type and the isolated type as well as the kagom\'{e}, the checkerboard and the star lattice we have proven linear independence of all localized multi-magnon states. On the other hand the pyrochlore lattice provides an example of a spin lattice having localized multi-magnon states with considerable linear dependence.Comment: 23 pages, 6 figure

    Magnetic excitations in the spin-1/2 triangular-lattice antiferromagnet Cs2_2CuBr4_4

    Get PDF
    We report on high-field electron spin resonance (ESR) studies of magnetic excitations in the spin-1/2 triangular-lattice antiferromagnet Cs2_2CuBr4_4. Frequency-field diagrams of ESR excitations are measured for different orientations of magnetic fields up to 25 T. We show that the substantial zero-field energy gap, Δ9.5\Delta\approx9.5 K, observed in the low-temperature excitation spectrum of Cs2_2CuBr4_4 [Zvyagin et al.et~al., Phys. Rev. Lett. 112, 077206 (2014)], is present well above TNT_N. Noticeably, the transition into the long-range magnetically ordered phase does not significantly affect the size of the gap, suggesting that even below TNT_N the high-energy spin dynamics in Cs2_2CuBr4_4 is determined by short-range-order spin correlations. The experimental data are compared with results of model spin-wave-theory calculations for spin-1/2 triangle-lattice antiferromagnet.Comment: 6 pages, 9 figure

    XY checkerboard antiferromagnet in external field

    Full text link
    Ordering by thermal fluctuations is studied for the classical XY antiferromagnet on a checkerboard lattice in zero and finite magnetic fields by means of analytical and Monte Carlo methods. The model exhibits a variety of novel broken symmetries including states with nematic ordering in zero field and with triatic order parameter at high fields.Comment: 6 page

    Fermi Surface Measurements on the Low Carrier Density Ferromagnet Ca1-xLaxB6 and SrB6

    Get PDF
    Recently it has been discovered that weak ferromagnetism of a dilute 3D electron gas develops on the energy scale of the Fermi temperature in some of the hexaborides; that is, the Curie temperature approximately equals the Fermi temperature. We report the results of de Haas-van Alphen experiments on two concentrations of La-doped CaB6 as well as Ca-deficient Ca1-dB6 and Sr-deficient Sr1-dB6. The results show that a Fermi surface exists in each case and that there are significant electron-electron interactions in the low density electron gas.Comment: 4 pages, 5 figures, submitted to PR

    Collinear N\'eel-type ordering in partially frustrated lattices

    Get PDF
    We consider two partially frustrated S = 1/2 antiferromagnetic spin systems on the triangular and pentagonal lattices. In an elementary plaquette of the two lattices, one bond has exchange interaction strength α\alpha (α1\alpha \leq 1) whereas all other bonds have exchange interaction strength unity. We show that for α\alpha less than a critical value αc\alpha_{c}, collinear N\'eel-type ordering is possible in the ground state. The ground state energy and the excitation spectrum have been determined using linear spin wave theory based on the Holstein-Primakoff transformation.Comment: Four pages, LaTeX, Four postscripts figures, Phys. Rev. B58, 73 (1998

    Lifetime of Gapped Excitations in a Collinear Quantum Antiferromagnet

    Full text link
    We demonstrate that local modulations of magnetic couplings have a profound effect on the temperature dependence of the relaxation rate of optical magnons in a wide class of antiferromagnets in which gapped excitations coexist with acoustic spin waves. In a two-dimensional collinear antiferromagnet with an easy-plane anisotropy, the disorder-induced relaxation rate of the gapped mode, Gamma_imp=Gamma_0+A(TlnT)^2, greatly exceeds the magnon-magnon damping, Gamma_m-m=BT^5, negligible at low temperatures. We measure the lifetime of gapped magnons in a prototype XY antiferromagnet BaNi2(PO4)2 using a high-resolution neutron-resonance spin-echo technique and find experimental data in close accord with the theoretical prediction. Similarly strong effects of disorder in the three-dimensional case and in noncollinear antiferromagnets are discussed.Comment: 4.5 pages + 2.5 pages supplementary material, published versio

    Fabrication of Net-Shape Functionally Graded Composites by Electrophoretic Deposition and Sintering: Modeling and Experimentation

    Get PDF
    It is shown that electrophoretic deposition (EPD) sintering is a technological sequence that is capable of producing net-shape bulk functionally graded materials (FGM). By controlling the shape of the deposition electrode, components of complex shapes can be obtained. To enable sintering net-shape capabilities, a novel optimization algorithm and procedure for the fabrication of net-shape functionally graded composites by EPD and sintering has been developed. The initial shape of the green specimen produced by EPD is designed in such a way that the required final shape is achieved after sintering-imposed distortions. The optimization is based on a special innovative iteration procedure that is derived from the solution of the inverse sintering problem: the sintering process is modeled in the “backward movie” regime using the continuum theory of sintering incorporated into a finite-element code. The experiments verifying the modeling approach include the synthesis by EPD of Al2O3/ZrO2 3-D (FGM) structures. In order to consolidate green parts shaped by EPD, post-EPD sintering is used. The fabricated deposits are characterized by optical and scanning electron microscopy. The experimentally observed shape change of the FGM specimen obtained by EPD and sintering is compared with theoretical predictions

    Field induced transitions in a kagome antiferromagnet

    Full text link
    The thermal order by disorder effect in magnetic field is studied for a classical Heisenberg antiferromagnet on the kagome lattice. Using analytical arguments we predict a unique H-T phase diagram for this strongly frustrated magnet: states with a coplanar and a uniaxial triatic order parameters respectively at low and high magnetic fields and an incompressible collinear spin-liquid state at a one-third of the saturation field. We also present the Monte Carlo data which confirm existence of these phases.Comment: 4 pages, 2 figures, accepted versio
    corecore