90 research outputs found

    Emergence of unidirectional coherent quasiparticles from high-temperature rotational symmetry broken phase of AV3Sb5 kagome superconductors

    Full text link
    Kagome metals AV3Sb5 display a rich phase diagram of correlated electron states, including superconductivity and novel density waves. Within this landscape, recent experiments reveal signs of a new transition below T ~ 35 K attributed to the highly sought-after electronic nematic phase that spontaneously breaks rotational symmetry of the lattice. We use spectroscopic-imaging scanning tunneling microscopy to study atomic-scale signatures of electronic symmetry breaking as a function of temperature across several materials in this family: CsV3Sb5, KV3Sb5 and Sn-doped CsV3Sb5. We find that rotational symmetry breaking onsets universally at a high temperature in these materials, toward the 2 x 2 charge density wave (CDW) transition temperature T*. At a significantly lower temperature of about 30 K, we discover a striking emergence of the quantum interference of coherent quasiparticles, a key signature for the formation of a coherent electronic state. These quasiparticles display a pronounced unidirectional reciprocal-space fingerprint, which strengthens on approaching the superconducting state. Our experiments reveal that the high-temperature charge ordering states are separated from the superconducting ground state by an intermediate-temperature regime with coherent unidirectional quasiparticles. Their emergence that occurs significantly below the onset of rotational symmetry breaking is phenomenologically different compared to high-temperature superconductors, shedding light on the complex nature of electronic nematicity in AV3Sb5 kagome superconductors

    Incommensurate charge-stripe correlations in the kagome superconductor CsV3_3Sb5−x_{5-x}Snx_x

    Full text link
    We track the evolution of charge correlations in the kagome superconductor CsV3_3Sb5_5 as its parent, long-ranged charge density order is destabilized. Upon hole-doping doping, interlayer charge correlations rapidly become short-ranged and their periodicity is reduced by half along the interlayer direction. Beyond the peak of the first superconducting dome, the parent charge density wave state vanishes and incommensurate, quasi-1D charge correlations are stabilized in its place. These competing, unidirectional charge correlations demonstrate an inherent electronic rotational symmetry breaking in CsV3_3Sb5_5, independent of the parent charge density wave state and reveal a complex landscape of charge correlations across the electronic phase diagram of this class of kagome superconductors. Our data suggest an inherent 2kfk_f charge instability and the phenomenology of competing charge instabilities is reminiscent of what has been noted across several classes of unconventional superconductors.Comment: 6 pages, 4 figure

    Quantifying magnetic field driven lattice distortions in kagome metals at the femto-scale using scanning tunneling microscopy

    Full text link
    A wide array of unusual phenomena has recently been uncovered in kagome solids. The charge density wave (CDW) state in the kagome superconductor AV3Sb5 in particular intrigued the community -- the CDW phase appears to break the time-reversal symmetry despite the absence of spin magnetism, which has been tied to exotic orbital loop currents possibly intertwined with magnetic field tunable crystal distortions. To test this connection, precise determination of the lattice response to applied magnetic field is crucial, but can be challenging at the atomic-scale. We establish a new scanning tunneling microscopy based method to study the evolution of the AV3Sb5 atomic structure as a function of magnetic field. The method substantially reduces the errors of typical STM measurements, which are at the order of 1% when measuring an in-plane lattice constant change. We find that the out-of-plane lattice constant of AV3Sb5 remains unchanged (within 10^-6) by the application of both in-plane and out-of-plane magnetic fields. We also reveal that the in-plane lattice response to magnetic field is at most at the order of 0.05%. Our experiments provide further constraints on time-reversal symmetry breaking in kagome metals, and establish a new tool for higher-resolution extraction of the field-lattice coupling at the nanoscale applicable to other quantum materials

    Electronic nematicity without charge density waves in titanium-based kagome metal

    Full text link
    Layered crystalline materials that consist of transition metal atoms on a kagome network have emerged as a versatile platform to study unusual electronic phenomena. For example, in the vanadium-based kagome superconductors AV3Sb5 (where A can stand for K, Cs, or Rb) there is a parent charge density wave phase that appears to simultaneously break both the translational and the rotational symmetry of the lattice. Here, we show a contrasting situation where electronic nematic order - the breaking of rotational symmetry without the breaking of translational symmetry - can occur without a corresponding charge density wave. We use spectroscopic-imaging scanning tunneling microscopy to study the kagome metal CsTi3Bi5 that is isostructural to AV3Sb5 but with a titanium atom kagome network. CsTi3Bi5 does not exhibit any detectable charge density wave state, but comparison to density functional theory calculations reveals substantial electronic correlation effects at low energies. Comparing the amplitudes of scattering wave vectors along different directions, we discover an electronic anisotropy that breaks the six-fold symmetry of the lattice, arising from both in-plane and out-of-plane titanium-derived d orbitals. Our work uncovers the role of electronic orbitals in CsTi3Bi5, suggestive of a hexagonal analogue of the nematic bond order in Fe-based superconductors.Comment: This is the submitted version. Final manuscript will appear in Nature Physic

    Alternate cleavage structure and electronic inhomogeneity in Ca-doped YBa2_2Cu3_3O7−δ_{7-\delta}

    Full text link
    YBa2_2Cu3_3O7−δ_{7-\delta} (YBCO) has favorable macroscopic superconducting properties of TcT_\mathrm{c} up to 93 K and Hc2H_{c2} up to 150 T. However, its nanoscale electronic structure remains mysterious because bulk-like electronic properties are not preserved near the surface of cleaved samples for easy access by local or surface-sensitive probes. It has been hypothesized that Ca-doping at the Y site could induce an alternate cleavage plane that mitigates this issue. We use scanning tunneling microscopy (STM) to study both Ca-free and 10% Ca-doped YBCO, and find that the Ca-doped samples do indeed cleave on an alternate plane, yielding a spatially-disordered partial (Y,Ca) layer. Our density functional theory calculations support the increased likelihood of this new cleavage plane in Ca-doped YBCO. On this surface, we image a superconducting gap with average value 24 ±\pm 3 meV and characteristic length scale 1-2 nm, similar to Bi-based high-TcT_\mathrm{c} cuprates, but the first map of gap inhomogeneity in the YBCO family.Comment: corrected typo in metadata author nam

    Small Fermi pockets intertwined with charge stripes and pair density wave order in a kagome superconductor

    Full text link
    The kagome superconductor family AV3Sb5 (A=Cs, K, Rb) emerged as an exciting platform to study exotic Fermi surface instabilities. Here we use spectroscopic-imaging scanning tunneling microscopy (SI-STM) and angle-resolved photoemission spectroscopy (ARPES) to reveal how the surprising cascade of higher and lower-dimensional density waves in CsV3Sb5 is intimately tied to a set of small reconstructed Fermi pockets. ARPES measurements visualize the formation of these pockets generated by a 3D charge density wave transition. The pockets are connected by dispersive q* wave vectors observed in Fourier transforms of STM differential conductance maps. As the additional 1D charge order emerges at a lower temperature, q* wave vectors become substantially renormalized, signaling further reconstruction of the Fermi pockets. Remarkably, in the superconducting state, the superconducting gap modulations give rise to an in-plane Cooper pair-density-wave at the same q* wave vectors. Our work demonstrates the intrinsic origin of the charge-stripes and the pair-density-wave in CsV3Sb5 and their relationship to the Fermi pockets. These experiments uncover a unique scenario of how Fermi pockets generated by a parent charge density wave state can provide a favorable platform for the emergence of additional density waves

    Flat band separation and robust spin-Berry curvature in bilayer kagome metals

    Get PDF
    Kagome materials have emerged as a setting for emergent electronic phenomena that encompass different aspects of symmetry and topology. It is debated whether the XV6_6Sn6_6 kagome family (where X is a rare earth element), a recently discovered family of bilayer kagome metals, hosts a topologically non-trivial ground state resulting from the opening of spin-orbit coupling gaps. These states would carry a finite spin-Berry curvature, and topological surface states. Here, we investigate the spin and electronic structure of the XV6_6Sn6_6 kagome family. We obtain evidence for a finite spin-Berry curvature contribution at the center of the Brillouin zone, where the nearly flat band detaches from the dispersing Dirac band because of spin-orbit coupling. In addition, the spin-Berry curvature is further investigated in the charge density wave regime of ScV6_6Sn6_6, and it is found to be robust against the onset of the temperature-driven ordered phase. Utilizing the sensitivity of angle resolved photoemission spectroscopy to the spin and orbital angular momentum, our work unveils the spin-Berry curvature of topological kagome metals, and helps to define its spectroscopic fingerprint.Comment: 21 pages, 4 figure

    Mapping the unconventional orbital texture in topological crystalline insulators

    Get PDF
    The newly discovered topological crystalline insulators (TCIs) harbor a complex band structure involving multiple Dirac cones. These materials are potentially highly tunable by external electric field, temperature or strain and could find future applications in field-effect transistors, photodetectors, and nano-mechanical systems. Theoretically, it has been predicted that different Dirac cones, offset in energy and momentum-space, might harbor vastly different orbital character, a unique property which if experimentally realized, would present an ideal platform for accomplishing new spintronic devices. However, the orbital texture of the Dirac cones, which is of immense importance in determining a variety of materials properties, still remains elusive in TCIs. Here, we unveil the orbital texture in a prototypical TCI Pb1−x_{1-x}Snx_xSe. By using Fourier-transform (FT) scanning tunneling spectroscopy (STS) we measure the interference patterns produced by the scattering of surface state electrons. We discover that the intensity and energy dependences of FTs show distinct characteristics, which can directly be attributed to orbital effects. Our experiments reveal the complex band topology involving two Lifshitz transitions and establish the orbital nature of the Dirac bands in this new class of topological materials, which could provide a different pathway towards future quantum applications

    YbV3_3Sb4_4 and EuV3_3Sb4_4, vanadium-based kagome metals with Yb2+^{2+} and Eu2+^{2+} zig-zag chains

    Full text link
    Here we present YbV3_3Sb4_4 and EuV3_3Sb4_4, two new compounds exhibiting slightly distorted vanadium-based kagome nets interleaved with zig-zag chains of divalent Yb2+^{2+} and Eu2+^{2+} ions. Single crystal growth methods are reported alongside magnetic, electronic, and thermodynamic measurements. YbV3_3Sb4_4 is a nonmagnetic metal with no collective phase transitions observed between 60mK and 300K. Conversely, EuV3_3Sb4_4 is a magnetic kagome metal exhibiting easy-plane ferromagnetic-like order below TCT_\text{C}=32K with signatures of noncollinearity under low field. Our discovery of YbV3_3Sb4_4 and EuV3_3Sb4_4 demonstrate another direction for the discovery and development of vanadium-based kagome metals while incorporating the chemical and magnetic degrees of freedom offered by a rare-earth sublattice
    • …
    corecore