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Flat band separation and robust spin Berry 
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Pasquale Orgiani    8, Vincent Polewczyk8, Jun Fujii    7, Phil D. C. King    3, 
Ivana Vobornik    7, Giorgio Rossi    6,7, Ilija Zeljkovic    9, Stephen D. Wilson    5, 
Ronny Thomale    4, Giorgio Sangiovanni    4  , Giancarlo Panaccione    7    
& Federico Mazzola    7,10 

Kagome materials have emerged as a setting for emergent electronic 
phenomena that encompass different aspects of symmetry and topology. 
It is debated whether the XV6Sn6 kagome family (where X is a rare-earth 
element), a recently discovered family of bilayer kagome metals, hosts 
a topologically non-trivial ground state resulting from the opening of 
spin–orbit coupling gaps. These states would carry a finite spin Berry 
curvature, and topological surface states. Here we investigate the spin 
and electronic structure of the XV6Sn6 kagome family. We obtain evidence 
for a finite spin Berry curvature contribution at the centre of the Brillouin 
zone, where the nearly flat band detaches from the dispersing Dirac band 
because of spin–orbit coupling. In addition, the spin Berry curvature 
is further investigated in the charge density wave regime of ScV6Sn6 
and it is found to be robust against the onset of the temperature-driven 
ordered phase. Utilizing the sensitivity of angle-resolved photoemission 
spectroscopy to the spin and orbital angular momentum, our work unveils 
the spin Berry curvature of topological kagome metals and helps to define 
its spectroscopic fingerprint.

Electrons on a kagome lattice constitute a pre-eminently suited scenario 
for exotic quantum phenomena at all coupling scales: within the Mott 
limit, it is the established paradigmatic setting for spin liquids and 
other aspects of frustrated magnets1. For symmetric metallic states or 
itinerant magnets, the diversity of dispersing kagome signatures such 
as Dirac cones, flat bands and van Hove singularities enable a plethora 
of correlated electron phenomena from topological band formation 
and symmetry breaking to be unlocked2–14.

The family of XV6Sn6 kagome materials, where X is a rare-earth 
element, belongs to a new series (hereafter dubbed the ‘166’ family) 
that has been predicted to host electronic states with non-trivial topol-
ogy. In particular, not only are the surface states that appear at natural 
cleavage planes of the crystals theoretically conceived to have a 
non-trivial origin15,16, but also the correlated flat band naturally arising 
from the kagome geometry17 is characterized by a non-zero ℤ2  
Kane–Mele invariant for the action of spin–orbit coupling (SOC)18–24. 
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On cleavage, two terminations are possible, namely a Sn- 
terminated and a mixed V/Sn-terminated surface plane, with the lat-
ter being characterized by V atoms arranged into a kagome pattern. 
To determine the type of termination, we acquired the Sn core levels 
alongside the ARPES, finding good agreement with previous works on 
the sister compound GdV6Sn6 (ref. 37). Specifically, as shown in Fig. 1d, 
the Sn termination exhibits the presence of two extra peaks at lower 
binding energies in the Sn 4d core levels, compatible with the corre-
sponding Sn-derived surface components. The kagome termination, 
on the other hand, shows a substantially different line shape, featur-
ing an asymmetric profile and a shift of about 0.43 eV towards higher 
binding energy values. These differences are attributed to the different 
local atomic environment present at the two surfaces37. The measured 
Fermi surfaces (Fig. 1e,f) for both terminations agree well with the 
calculated ones (Supplementary Fig. 2) and the typical kagome motif 
of corner-sharing triangles is also recognizable in reciprocal space.

The surface states at the kagome termination have minimal separa-
tion from the bulk continuum15,16. This makes their spin-resolved meas-
urements challenging, since the bulk contribution is intense and makes 
the spin-polarized signal too weak to be observed (see also Supplemen-
tary Fig. 3 for additional spectra). However, the Sn-terminated surface 
features well-separated surface states, which allow the spin-ARPES 
experiments to be performed more easily, offering the perfect play-
ground to investigate the topological properties of this system. We 
will focus on this termination when discussing the topological char-
acter of the surface states of TbV6Sn6. In contrast, the correlated flat 
band topology is not termination-dependent. Such a band, in fact, is 
a feature inherent to the bulk kagome geometry, making this study of 
broad interest for kagome lattices in general and offering a compara-
tive parallel case study for other systems. In addition, to determine 
the topology of the gap between the Dirac state and the flat band, the 
experimental measurement of the spin Berry curvature is essential, 
because all the electronic states are spin degenerate, and thus inac-
cessible by standard spin-ARPES.

The high-resolution electronic structure of the Sn termination 
is shown in Fig. 2. By using both linear vertical and horizontal light 
polarization (Es and Ep, respectively; see also the experimental setting 
in Fig. 2a), we detect a plethora of interesting electron features, as 
shown in Fig. 2b,c; multiple Dirac dispersions, van Hove singularities 
and the correlated flat band, which are a hallmark of kagome materi-
als, are well identified. In particular, the van Hove singularities are 
located slightly above the Fermi energy and at about −0.4 eV (labelled 
VH1 and VH2 in Fig. 2f) and are visible in both theory and experiment. 
In addition, the Dirac cones form at the K point at binding energies of 
−1.5 eV (D1) and −0.3 eV (D2) (Fig. 2b,f). The latter set of bands evolves 
symmetrically across the BZ with a quadratic minimum (Fig. 2b) at the 
zone centre. According to a basic first-nearest-neighbour tight-binding 
calculation (see also Fig. 4a), such a quadratic minimum is pinned to 
the flat band. We clearly detect both features in Fig. 2d and the relative 
energy distribution curves (the blue and green curves) in Fig. 2e. We 
also notice that the flat band is only visible with Es polarized light, while 
the quadratic minimum intensity disappears at the zone centre because 
of the photoemission matrix elements. Nonetheless, the quadratic 
minimum is well identified in the energy distribution curve acquired 
with Ep polarization (blue curve), for which, instead, the flat band is not 
visible. Thus, the combination of Es and Ep allows us to visualize both the 
quadratic minimum and the flat band, and to estimate the SOC-induced 
gap between them to be ~60 meV. Importantly, the presence of SOC 
mixes the orbital character across the opening point at Γ, and induces 
a finite spin Berry curvature (see again Fig. 4a and further discussion).

Close to the Fermi level, our ARPES measurements and DFT calcu-
lations enable the investigation of the topological nature of the 166 
family. We focus on the surface states originating from the multiple 
gapped Dirac cones described in Fig. 1b,c. In previous literature, theo-
retical works have attempted a topological classification of the ℤ2 

If the onsite energy of such a separated flat band could be controlled, 
one could trigger new topological phases with potential applications 
in spintronics and non-volatile electronics25–29. Therefore, uncovering 
the non-trivial topological character of such a flat band would be a true 
milestone in the field of condensed matter physics.

The direct experimental observation of non-trivial topological 
properties in 166 kagome metals remains an open challenge. Although 
transport is unable to probe correlated flat band states below the Fermi 
level EF or isolate topological surface states10,11,30–36, in angle-resolved 
photoemission spectroscopy (ARPES) there are tantalizing hints that 
these states exist. Crucially, measurements of the spin degree of free-
dom are missing; when ARPES has been able to detect the surface 
states manifold and the flat bands in XV6Sn6 systems15,16,37, the lack 
of measurements for the spin degree of freedom and the action on 
it of time-reversal symmetry hinder the conclusive proof of their 
topological nature.

Here we provide the spectroscopic evidence of the non-trivial 
topology in the 166’ kagome family. We use spin-ARPES and density 
functional theory (DFT) calculations to determine the electronic 
structure of these systems resolved in energy, momentum and spin. 
We not only find a net spin polarization of the surface states in the 
prototypical compound TbV6Sn6, but we ultimately demonstrate the 
non-trivial topology of the gap between the dispersive Dirac band and 
the nearly flat band arising from the kagome geometry. Such a gap is 
a common feature of all kagome lattices with non-zero SOC, and its 
nature is believed to be topological, yet its demonstration has been 
elusive until now10,11,35,38. Notably, we detect a finite spin Berry curvature 
in kagome metals, and by systematically studying the whole series of 
(Tb,Ho,Sc)V6Sn6 compounds, we also demonstrate its resilience against 
the onset of a charge ordered phase, which is a distinctive feature of 
many recently discovered kagome metals9,39,40. As well as unveiling the 
interplay between many-body electronic states and topology in this 
class of materials, our work provides experimental measurements of 
a spin Berry curvature in real quantum systems. Indeed, the detection 
of energy- and momentum-resolved finite Berry curvature signals was 
hitherto limited to cold atom experiments, which unveiled the deep 
relationship between topology and flatness in optical lattices41. Fur-
thermore, in that context, flat bands serve as a platform for emergent 
correlated phases and their simplicity can advance the understanding 
of the physics that occurs in argon ice, Landau levels and twisted Van der 
Waals bilayers42. Here we extend this context to real solid-state systems.

TbV6Sn6 (Fig. 1a) is a kagome system belonging to the 166 family 
of rare-earth kagome metals, along with GdV6Sn6 and HoV6Sn6 (refs. 
5,37,43,44). It exhibits a uniaxial ferromagnetic transition at 4.1 K with 
a substantial anisotropy in the magnetic susceptibility, suggesting a 
ferromagnetic alignment of Tb3+ 4f moments perpendicular to the V 
kagome layers44. The DFT bulk electronic band structure is shown in 
Fig. 1b. It is characterized by prominent features hinting at a non-trivial 
topology. Dirac-like dispersions appear at the K points of the Brillouin 
zone (BZ) and contribute to the metallic character of the material. In 
addition, two flat bands are visible below and above the chemical poten-
tial, as highlighted by the yellow colour proportional to the band n- and 
momentum k-resolved density of states ρnk ≈ 1/vnk, where vnk represents 
the electronic velocity. Both the Dirac cones and the flat band around 
−1 eV are spectroscopically detectable by ARPES owing to their occu-
pied character. As shown in Fig. 1c, which shows enlargements of the 
red rectangles (1) and (2) of Fig. 1b, SOC opens gaps at the Dirac cones. 
The SOC permits direct gaps between bands throughout the BZ, which 
in turn allows the topological invariant ℤ2 for the occupied bands to 
be defined using parity products at time-reversal invariant momenta45. 
As for GdV6Sn6 (refs. 15,16), we find ℤ2 = 1 for the bands around the 
Fermi level. We also highlight that, in the absence of SOC, the Dirac 
cones carry a finite Chern number 𝒞𝒞, and are the source and sink of 
finite Berry curvature Ω(k), resulting in topologically protected arcs 
on the surface of this class of materials, as Fig. 1g shows.
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invariant of the surface states across the BZ. According to Hu et al.16, 
topological surface states in GdV6Sn6 are expected to cover a significant 
portion of the BZ, bridging a large bulk gap across Γ. In contrast to these 
data, our ARPES spectra in Fig. 2f does not reveal any surface states 
through the Fermi level around the Γ point, probably due to a different 
chemical potential in TbV6Sn6,which pushes them into the unoccupied 
region of the electronic density of states. This observation is consistent 
with our slab calculation of the electronic structure in Fig. 2g, which, 
differently from the spectrum in Fig. 1g, fully accounts for the structural 
relaxation of atoms at the Sn-terminated surface, where these states 
are present. They are primarily unoccupied, but a portion of them 
bridges the gap below the Fermi energy along the ̄Γ–M̄ line. We also 
notice that in Fig. 2g these surface states form a small electron pocket 
close to the centre of the BZ. This pocket is absent in ARPES. Nonethe-
less, the presence of these surface states close to the K point is enforced 
by topology, because they originate as Fermi arcs from the Dirac cones. 
Therefore, in this region, we will seek the signature of the spin-polarized 
feature in ARPES, because these states are accessible there.

To experimentally verify this, we first calculated the expected 
spin texture of the Sn surface states. The calculated spin-resolved 

electronic structure is shown in Fig. 3a. We found that the spin com-
ponent along y Sy gives the most significant and only non-zero con-
tribution along the ̄Γ–K̄–M̄kx direction (see Supplementary Fig. 9 for 
the spin components along x Sx and and z Sz components). This result 
demonstrates the spin-momentum locking of the spin texture and 
its non-trivial origin. Using the ARPES analyser’s deflectors, we meas-
ured the spin-ARPES signal along ̄Γ–K̄–M̄ direction at specific 
momenta for both positive and negative k values (the coloured verti-
cal bars in Fig. 3a). In this way, not only can the theoretical predictions 
be proved, but the time-reversal symmetry constraint can also be 
verified by keeping the same matrix elements. The spin-ARPES data 
for Sy are shown in Fig. 3b–e (see Supplementary Information for 
details about data normalization). A clear spin-resolved signal in the 
proximity of the Fermi level confirms a non-vanishing spin polariza-
tion typical of spin-polarized states. In addition, the spin sign reverses 
with the momentum k, guaranteeing the time-reversal symmetry of 
the system. This important aspect is also compatible with the sample 
being well above the magnetic transition temperature (the measure-
ments were indeed performed at 77 K). In addition, the Tb 4f levels 
are well separated from the near-Fermi energy region and do not 
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Fig. 1 | Crystal structure, bulk electronic properties and surface terminations 
of TbV6Sn6 kagome metal. a, Crystal structure of TbV6Sn6 showing top 
and side views of the unit cell. b, Bulk electronic structure along the Γ–K–M 
direction in the presence of SOC. The electronic states are coloured by the band 
and momentum-resolved density of states, with yellow highlighting a large 
contribution. c, Enlargement of the red boxes (1) and (2) in b. Red and blue bands 

refer to calculations with and without SOC, respectively. d, Sn 4d core level 
spectroscopy for the kagome-terminated (term.) (green) and Sn-terminated 
(red) surface (surf.) of TbV6Sn6. e,f, ARPES Fermi surfaces for the kagome (e) 
and Sn (f) termination of TbV6Sn6, respectively. g, Spectral function of the (001) 
surface Green’s function for the Sn termination in the absence of SOC. Boxes (1) 
and (2) refer to those in b.
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hybridize significantly with the measured surface states (see also 
Supplementary Fig. 4).

The energy distribution curves of Fig. 3b–e unambiguously dem-
onstrate the spin-polarized character of the surface states in TbV6Sn6. 
In Supplementary Fig. 5, a thicker energy distribution curve map is 
also available for completeness. We notice that of the full set of states 
present in the DFT calculations, we are only able to resolve those that 
are well separated from the bulk electronic structure and that appear 
more prominent in intensity within the gap, which still provides suf-
ficient evidence for the spin-momentum locking expected for these 
spectrocopic features. As such, this makes our finding relevant within 
the framework of transport experiments in kagome lattices9,31,46–51.

Standard spin-ARPES, on the other hand, cannot be used to prove 
the topological character of the gap between the correlated kagome 
flat band and the quadratic minimum because those bands are spin 
degenerate. Theoretically, one can access the topological character 
of the gap by calculating the spin Berry curvature of this system. The 
Chern number 𝒞𝒞 of each band forming such a gap is identically zero 

owing to the combined action of inversion (which gives Ωn↑(k) = Ωn↑(−k) 
for the Berry curvature) and time-reversal symmetry (which enforces 
Ωn↑(k) = Ωn↓(−k)). Nonetheless, one can expect a finite spin Berry 
curvature ΩSz

z (k)  due to the action of SOC. At the level of a simple 
first-nearest-neighbour tight-binding model with hopping amplitude 
t, SOC opens a gap at the Γ point between the parabolic dispersion 
from the Dirac band (1) and the flat band (2), as shown in Fig. 4a. The 
opening of a gap is in general associated with the appearance of a finite 
dispersion for the flat band18,52, and SOC can be thought of as a pertur-
bation breaking the real-space topology that protects the band touch-
ing in generic frustrated hopping models53. In modern language, 
kagome spectra without a mathematically flat band cannot be derived 
as one of the two isospectral partners of a supersymmetric bipartite 
graph with finite Witten index54. As a result, the electronic states 
around the opened gap feature a finite spin Berry curvature, leading 
to a non-trivial spin-Chern number for the weakly dispersing flat band 
itself. Similar conclusions hold also for TbV6Sn6, as shown in Fig. 4b 
(top panel), even though the band structure is much more complex 
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Fig. 2 | Spectroscopy of the surface states and of the flat band. a, Experimental 
ARPES setting of linear vertical (Ep) and horizontal (Es) light polarizations (h 
is the Planck constant and ν the frequency of light). Es is fully in-plane and 
parallel to the x axis. Ep has an incidence angle of 45o, and thus has 50% of the 
out-of-plane contribution and 50% of the in-plane contribution parallel to the 
y axis. b,c, ARPES spectra recorded with Ep (b) and Es (c) lights. QM, quadratic 
minimum. d, Enlarged view of the red box in c highlighting the dispersion of the 
flat band around the Γ point at approximately −1 eV of binding energy. e, Energy 
distribution curve along the green line of d collected with Es polarization (green 

curve) and for Ep polarization (blue curve). The former shows the flat band 
position for kx,y = 0; the latter instead has prominent intensity corresponding to 
the quadratic minimum, as is also visible in b and c. f, Enlargement of the ARPES 
data in the proximity of the Fermi level showing the most intense Sn-derived 
surface states (indicated by arrows labelled (1) and (2)) and also the van Hove 
singularities VH1 and VH2 at the M point, with the maximum of VH1 slightly above 
the Fermi level. g, First-principles electronic structure of a finite slab of TbV6Sn6 
on structural relaxation of the atoms at the Sn termination. As in f, arrows 
labelled (1) and (2) indicate the most intense Sn-derived surface states.

http://www.nature.com/naturephysics


Nature Physics

Article https://doi.org/10.1038/s41567-023-02053-z

than the simplified picture shown by the tight-binding model (notice, 
for instance, the presence of a spectator band carrying vanishing spin 
Berry curvature at Γ). In addition, away from the flat band region 
around the Γ point, our theoretical calculations reveal enhanced spin 
Berry curvature at every SOC-induced gap avoided crossing between 
two spin-degenerate bands.

Schüler et al.55 recently proposed a methodology based on circular 
dichroism (CD) and spin-ARPES to directly address a signal propor-
tional to the spin Berry curvature ΩSz

z (k) of quantum materials, thus 
allowing us to disentangle the trivial and non-trivial topologies. CD has 
already been used in ARPES experiments to obtain information about 
the Berry curvature56,57. However, the presence of inversion symmetry 
and SOC in TbV6Sn6 requires separating the two spin channels, that 
is, ±Sz, as we show in Fig. 4c,d. In addition, to ensure that any geometri-
cal contribution will not artificially alter our measurements, we meas-
ure the CD at the BZ centre, where the geometrical contribution is 
exactly zero, and so it is the spin-integrated dichroic signal. Being at 
the BZ centre also has the advantage that this point is time-reversal 
symmetric; thus, we are able to detect a signal reversal for the plus and 
minus components of the spin. Our measurements, shown in Fig. 4e, 
demonstrate a substantial non-zero signal for each spin species of the 
quadratic minimum (approximately −1 eV) and for electronic bands at 
slightly higher binding energies where also a finite spin Berry curvature 
appears as a result of SOC (greater than approximately −1.2 eV), with a 
reversal between spin up and down channels (red and blue, respec-
tively). The spin Berry curvature contribution at −1 eV comes from the 
quadratic minimum and this can be understood by looking at the 
spin-integrated CD ARPES (Supplementary Fig. 1) when compared to 
the measurements performed with Es and Ep light polarization: the 
circular light has matrix elements similar to Ep, and thus the CD ARPES 
results in a vanishing spectral weight for the flat band and a clear signal 
for the quadratic minimum, at the BZ centre. Thus, we can attribute 
the strong intensity peaked at −1 eV of Fig. 4e to the spin Berry curvature 
of the quadratic minimum. Similar conclusions can also be drawn for 

HoV6Sn6, as we experimentally show in Fig. 4f,g. It is worth stressing 
that by changing the photon energy we were not able to resolve the flat 
band by using circularly polarized light; by contrast, in this experimen-
tal configuration, the quadratic minimum was the only resolved fea-
ture. This result agrees with our calculations of Fig. 4b (top panel) that 
suggest a finite spin Berry curvature contribution around the SOC gap 
for the visible band (1) forming the quadratic minimum. Our analysis 
is proof of a topological gap in a kagome metal. In addition, our CD 
measurements in Fig. 4e unveil a large signal at energies below the flat 
band region. This result is again supported by our first-principles 
calculations of ΩSz

z (k), as we show in Fig. 4b (bottom panel), where the 
electronic states around −1.3 eV and −1.4 eV are characterized by an 
enhanced spin Berry curvature.

Kagome metals are also getting much attention since they rep-
resent the perfect playground for several intertwined many-body 
orders9. The unconventional charge density wave (CDW) is one of 
these. Its origin, whether it arises from electron–phonon coupling, 
electron–electron interactions or a combination thereof, is still a mat-
ter of debate. Differently from TbV6Sn6 and HoV6Sn6, ScV6Sn6 shows a 
CDW phase below the temperature TCDW ≈ 92 K, characterized by a dis-
tinctly different structural mode than that observed in the archetypal 
AV3Sb5 (A = K, Rb, Cs) compounds39 and FeGe (ref. 40). In Fig. 4h,i we 
present our spin-resolved CD results for ScV6Sn6 at low temperature, 
that is, inside the charge ordered phase, whereas in Supplementary 
Fig. 10 we show that, in addition to an increase in the noise level due to 
thermal broadening, the aforementioned CD results are identical above 
and below TCDW. Clearly, around −1 eV, we see a net spin asymmetry 
that reverses sign when the light polarization is changed. This result 
unambiguously demonstrates that the spin Berry curvature is robust 
against the onset of the ordered phase and that the SOC-induced energy 
scale associated with the appearance of a finite spin Berry curvature is 
larger than that correlated to the CDW symmetry breaking. Interest-
ingly, our first-principles calculations, shown in Supplementary Fig. 8, 
reveal that, on unfolding the band structure of the distorted ScV6Sn6 
onto the primitive unit cell, the CDW distortion affects only marginally 
the electronic properties. This is in striking contrast to the effect of 
the CDW order in AV3Sb5 compounds, where sizable band gaps open 
around the chemical potential58,59.

In conclusion, we have demonstrated the topological nature of 
XV6Sn6 kagome metals by exploiting the combination of spin-ARPES 
and DFT calculations and leveraging the sensitivity at the multiple 
energy scales relevant to kagome systems. As well as unveiling a net 
spin polarization of the surface states of TbV6Sn6, which originates 
from the non-trivial ℤ2 invariant of the SOC-induced bulk gaps close 
to the Fermi energy, we have crucially shown that the correlated flat 
band region is characterized by a finite spin Berry curvature, establish-
ing its topological character. In addition, we have reported the resil-
ience of the non-trivial topology against the onset of the charge ordered 
phase in ScV6Sn6, revealing its ubiquitous nature across the series. This 
will motivate the investigation of the spin Berry curvature in other 
kagome metals as well, such as AV3Sb5 and FeGe, where a non-trivial flat 
band separation has also been predicted and in which the charge order 
has a strong effect on the electronic properties. Within a more general 
perspective, our work constitutes evidence of the multidimensional 
topological nature, that is, from surface to bulk states, of the 166 kag-
ome family. It ultimately establishes these systems as a new domain 
for correlated topological metallicity with a non-trivial spin Berry 
curvature of the wave function manifold.
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Methods
Experimental details
Single crystals of XV6Sn6 (Tb, Sc and Ho) were grown using a flux-based 
growth technique as reported in ref. 60. X (chunk, 99.9%), V (pieces, 
99.7%) and Sn (shot, 99.99%) were loaded inside an alumina cruci-
ble with the molar ratio of 1:6:20 and then heated at 1,125 °C for 12 h. 
Then, the mixture was slowly cooled to 780 oC at a rate of 2 °C h−1. Thin 
plate-like single crystals were separated from the excess Sn flux by cen-
trifugation at 780 °C. The samples were cleaved in ultrahigh vacuum at 
a pressure of 1 × 10−10 mbar. The spin-ARPES data were acquired at the 
APE-LE end station (Trieste) using a VLEED-DA30 hemispherical ana-
lyser. The energy and momentum resolutions were better than 12 meV 
and 0.02 Å−1, respectively. The temperature of the measurements was 
kept constant throughout the data acquisitions (16 K and 77 K), above 
the magnetic transition of the system (<5 K). Both linear and circular 
polarized light was used to collect the data from the APE undulator of 
the synchrotron radiation source ELETTRA (Trieste).

Theoretical details
We employed first-principles calculations based on the DFT as imple-
mented in the Vienna ab-initio simulation package61, within the 
projector-augmented plane-wave method62. The generalized gradient 
approximation as parametrized by the Perdew-Burke-Ernzerhof func-
tional for the exchange-correlation potential was used63 by expanding 
the Kohn–Sham wave functions into plane waves up to an energy cutoff 
of 400 eV. We sample the BZ on an 12 × 12 × 6 regular mesh by includ-
ing SOC self-consistently. For the calculation of the surface spectral 
function, the Kohn–Sham wave functions were projected onto a Tb d, 
V d and Sn s, p-type basis. The calculation of the spin Berry curvature 
requires a Wannier Hamiltonian where the lattice symmetries are prop-
erly enforced. For this reason, we used the full-potential local-orbital 
code64, v.21.00-61 (https://www.FPLO.de/). The spin Berry curvature 
for band n is then defined as

Ω
z
xy(k) = ∑

En>Em≠n

⟨n| vzs,x |m⟩ ⟨m| vy |n⟩ (x ↔ y)
(Enk − Emk)

2 , (1)

with the spin operator σz and velocity operator vi =
1
ℏ
∂H/∂ki  (i = x, y). 

||nk⟩ is the eigenvector of the Hamiltonian H with the eigenvalue  
Enk. Equation (1) is computed by using our in-house post-wan library 
(Code availability).

Data availability
Source data are provided with this paper and are also available at 
https://doi.org/10.5281/zenodo.7787937.

Code availability
Our in-house post-wan library used to compute Berry curvature-related 
quantities can be downloaded from https://github.com/philipp-eck/
post_wan.
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