18 research outputs found

    PERPENDICULAR TRANSPORT OF ENERGETIC CHARGED PARTICLES IN NONAXISYMMETRIC TWO-COMPONENT MAGNETIC TURBULENCE

    Get PDF
    ABSTRACT Q1,Q2 We examine energetic charged particle diffusion perpendicular to a mean magnetic field B 0 due to turbulent fluctuations in a plasma, relaxing the common assumption of axisymmetry around B 0 and varying the ratio of two fluctuation components, a slab component with parallel wavenumbers and a two-dimensional (2D) component with perpendicular wavenumbers. We perform computer simulations mostly for 80% 2D and 20% slab energy and a fluctuation amplitude on the order of B 0 . The nonlinear guiding center (NLGC) theory provides a reasonable description of asymptotic perpendicular diffusion as a function of the nonaxisymmetry and particle energy. These values are roughly proportional to the particle speed times the field line diffusion coefficient, with a prefactor that is much lower than in the classical field line random walk model of particle diffusion. NLGC predicts a prefactor in closer agreement with simulations. Next we consider extreme fluctuation anisotropy and the approach to reduced dimensionality. For 99% slab fluctuation energy, field line trajectories are diffusive, but the particle motion is subdiffusive. For 99% 2D fluctuation energy, both field lines and particle motions are initially subdiffusive and then diffusive, but NLGC gives unreliable results. The time dependence of the running particle diffusion coefficient shows that in all cases asymptotic diffusion is preceded by free streaming and subdiffusion, but the latter differs from standard compound subdiffusion. We can model the time profiles in terms of a decaying negative correlation of the perpendicular velocity due to the possibility of backtracking along magnetic field lines

    Using under-ice hyperspectral transmittance to determine land-fast sea-ice algal biomass in Saroma-ko Lagoon, Hokkaido, Japan

    Get PDF
    Sea ice, which forms in polar and nonpolar areas, transmits light to ice-associated (sympagic) algal communities. To noninvasively study the distribution of sea-ice algae, empirical relations to estimate its biomass from under-ice hyperspectral irradiance have been developed in the Arctic and Antarctica but lack for nonpolar regions. This study examines relationships between normalised difference indices (NDI) calculated from hyperspectral transmittance and sympagic algal biomass in the nonpolar Saroma-ko Lagoon. We analysed physico-biogeochemical properties of snow and land-fast sea ice supporting 27 paired bio-optical measurements along three transects covering an area of over 250 m × 250 m in February 2019. Snow depth (0.08 ± 0.01 m) and ice-bottom brine volume fraction (0.21 ± 0.02) showed low (0.06) and high (0.58) correlations with sea-ice core bottom section chlorophyll a (Chl. a), respectively. Spatial analyses unveiled the patch size of sea-ice Chl. a to be ~65 m, which is in the same range reported from previous studies. A selected NDI (669, 596 nm) explained 63% of algal biomass variability. This reflects the bio-optical properties and environmental conditions of the lagoon that favour the wavelength pair in the orange/red part of the spectrum and suggests the necessity of a specific bio-optical relationship for Saroma-ko Lagoon

    Altimetric observation of wave attenuation through the Antarctic marginal ice zone using ICESat-2

    Get PDF
    The Antarctic marginal ice zone (MIZ) is a highly dynamic region where sea ice interacts with ocean surface waves generated in ice-free areas of the Southern Ocean. Improved large-scale (satellite-based) estimates of MIZ extent and variability are crucial for understanding atmosphere–ice–ocean interactions and biological processes and detection of change therein. Legacy methods for defining the MIZ are typically based on sea ice concentration thresholds and do not directly relate to the fundamental physical processes driving MIZ variability. To address this, new techniques have been developed to measure the spatial extent of significant wave height attenuation in sea ice from variations in Ice, Cloud and land Elevation Satellite-2 (ICESat-2) surface heights. The poleward wave penetration limit (boundary) is defined as the location where significant wave height attenuation equals the estimated error in significant wave height. Extensive automated and manual acceptance/rejection criteria are employed to ensure confidence in along-track wave penetration width estimates due to significant cloud contamination of ICESat-2 data or where wave attenuation is not observed. Analysis of 304 ICESat-2 tracks retrieved from four months of 2019 (February, May, September and December) reveals that sea-ice-concentration-derived MIZ width estimates are far narrower (by a factor of ∼ 7 on average) than those from the new technique presented here. These results suggest that indirect methods of MIZ estimation based on sea ice concentration are insufficient for representing physical processes that define the MIZ. Improved large-scale measurements of wave attenuation in the MIZ will play an important role in increasing our understanding of this complex sea ice zone

    Biological responses to change in Antarctic sea ice habitats

    Get PDF
    Sea ice is a key habitat in the high latitude Southern Ocean and is predicted to change in its extent, thickness and duration in coming decades. The sea-ice cover is instrumental in mediating ocean–atmosphere exchanges and provides an important substrate for organisms from microbes and algae to predators. Antarctic krill, Euphausia superba, is reliant on sea ice during key phases of its life cycle, particularly during the larval stages, for food and refuge from their predators, while other small grazers, including copepods and amphipods, either live in the brine channel system or find food and shelter at the ice-water interface and in gaps between rafted ice blocks. Fish, such as the Antarctic silverfish Pleuragramma antarcticum, use platelet ice (loosely-formed frazil crystals) as an essential hatching and nursery ground. In this paper, we apply the framework of the Marine Ecosystem Assessment for the Southern Ocean (MEASO) to review current knowledge about relationships between sea ice and associated primary production and secondary consumers, their status and the drivers of sea-ice change in this ocean. We then use qualitative network modelling to explore possible responses of lower trophic level sea-ice biota to different perturbations, including warming air and ocean temperatures, increased storminess and reduced annual sea-ice duration. This modelling shows that pelagic algae, copepods, krill and fish are likely to decrease in response to warming temperatures and reduced sea-ice duration, while salp populations will likely increase under conditions of reduced sea-ice duration and increased number of days of >0°C. Differences in responses to these pressures between the five MEASO sectors were also explored. Greater impacts of environmental pressures on ice-related biota occurring presently were found for the West and East Pacific sectors (notably the Ross Sea and western Antarctic Peninsula), with likely flow-on effects to the wider ecosystem. All sectors are expected to be impacted over coming decades. Finally, we highlight priorities for future sea ice biological research to address knowledge gaps in this field

    Biological responses to change in Antarctic sea ice habitats

    Get PDF
    Sea ice is a key habitat in the high latitude Southern Ocean and is predicted to change in its extent, thickness and duration in coming decades. The sea-ice cover is instrumental in mediating ocean–atmosphere exchanges and provides an important substrate for organisms from microbes and algae to predators. Antarctic krill, Euphausia superba, is reliant on sea ice during key phases of its life cycle, particularly during the larval stages, for food and refuge from their predators, while other small grazers, including copepods and amphipods, either live in the brine channel system or find food and shelter at the ice-water interface and in gaps between rafted ice blocks. Fish, such as the Antarctic silverfish Pleuragramma antarcticum, use platelet ice (loosely-formed frazil crystals) as an essential hatching and nursery ground. In this paper, we apply the framework of the Marine Ecosystem Assessment for the Southern Ocean (MEASO) to review current knowledge about relationships between sea ice and associated primary production and secondary consumers, their status and the drivers of sea-ice change in this ocean. We then use qualitative network modelling to explore possible responses of lower trophic level sea-ice biota to different perturbations, including warming air and ocean temperatures, increased storminess and reduced annual sea-ice duration. This modelling shows that pelagic algae, copepods, krill and fish are likely to decrease in response to warming temperatures and reduced sea-ice duration, while salp populations will likely increase under conditions of reduced sea-ice duration and increased number of days of >0°C. Differences in responses to these pressures between the five MEASO sectors were also explored. Greater impacts of environmental pressures on ice-related biota occurring presently were found for the West and East Pacific sectors (notably the Ross Sea and western Antarctic Peninsula), with likely flow-on effects to the wider ecosystem. All sectors are expected to be impacted over coming decades. Finally, we highlight priorities for future sea ice biological research to address knowledge gaps in this field

    PERPENDICULAR TRANSPORT OF ENERGETIC CHARGED PARTICLES IN NONAXISYMMETRIC TWO-COMPONENT MAGNETIC TURBULENCE

    No full text
    ABSTRACT We examine energetic charged particle diffusion perpendicular to a mean magnetic field B 0 due to turbulent fluctuations in a plasma, relaxing the common assumption of axisymmetry around B 0 and varying the ratio of two fluctuation components, a slab component with parallel wavenumbers and a two-dimensional (2D) component with perpendicular wavenumbers. We perform computer simulations mostly for 80% 2D and 20% slab energy and a fluctuation amplitude on the order of B 0 . The nonlinear guiding center (NLGC) theory provides a reasonable description of asymptotic perpendicular diffusion as a function of the nonaxisymmetry and particle energy. These values are roughly proportional to the particle speed times the field line diffusion coefficient, with a prefactor that is much lower than in the classical field line random walk model of particle diffusion. NLGC predicts a prefactor in closer agreement with simulations. Next we consider extreme fluctuation anisotropy and the approach to reduced dimensionality. For 99% slab fluctuation energy, field line trajectories are diffusive, but the particle motion is subdiffusive. For 99% 2D fluctuation energy, both field lines and particle motions are initially subdiffusive and then diffusive, but NLGC gives unreliable results. The time dependence of the running particle diffusion coefficient shows that in all cases asymptotic diffusion is preceded by free streaming and subdiffusion, but the latter differs from standard compound subdiffusion. We can model the time profiles in terms of a decaying negative correlation of the perpendicular velocity due to the possibility of backtracking along magnetic field lines

    Quercetin Enhances Endurance Capacity via Antioxidant Activity and Size of Muscle Fibre Type 1

    No full text
    This study aimed to examine effects of quercetin on 1) endurance capacity 2) malondialdehyde (MDA) and superoxide dismutase (SOD) activity in skeletal muscle and 3) muscle fibre density and size in mice after an intense exercise. There were 5 groups: control, vitamin C (250 mg/kg body weight), quercetin 150, 300, and 450 mg/kg body weight respectively once a day for 28 days. Endurance capacity was measured by exhaustive swimming exercise test which was done 24-h after swimming at high intensity. Then muscles were analyzed for MDA, SOD activity, and muscle fibre density and size. After the 28-day treatment, endurance time in vitamin C and quercetin treated groups at dose of 150 mg/kg body weight were longer than the vehicle group (

    Quercetin Enhances Endurance Capacity via Antioxidant Activity and Size of Muscle Fibre Type 1

    No full text
    This study aimed to examine effects of quercetin on 1) endurance capacity 2) malondialdehyde (MDA) and superoxide dismutase (SOD) activity in skeletal muscle and 3) muscle fibre density and size in mice after an intense exercise. There were 5 groups: control, vitamin C (250 mg/kg body weight), quercetin 150, 300, and 450 mg/kg body weight respectively once a day for 28 days. Endurance capacity was measured by exhaustive swimming exercise test which was done 24-h after swimming at high intensity. Then muscles were analyzed for MDA, SOD activity, and muscle fibre density and size. After the 28-day treatment, endurance time in vitamin C and quercetin treated groups at dose of 150 mg/kg body weight were longer than the vehicle group (
    corecore