88 research outputs found

    Competition between electron transfer and energy migration in self-assembled porphyrin triads

    Get PDF
    The photoinduced electron transfer (ET) and the energy migration (EM) processes have been studied in liquid solutions and polymeric (PMMA) films for the triads consisting of the Zn-octaethylporphyrin chemical dimer (the energy and electron donor, D) and dipyridyl substituted tetrapyrrole extra-ligands (porphyrins, chlorin, tetrahydroporphyrin) as the acceptors, A. On the basis of the time correlated single photon counting technique and femtosecond pump-probe spectroscopy, it has been shown that D fluorescence quenching with time constant ranging from 1.7 to 10 ps is due to competing EM and ET processes from the dimer to A's. In addition, the fluorescence decay time shortening (by āˆ¼1.3ā€“1.6 times in toluene at 293 K) is observed for electron accepting extra-ligands in the triads. The acceptor fluorescence quenching is hard dependent on the mutual spatial arrangement of the triad subunits, but becomes stronger upon the solvent polarity increase (addition of acetone to toluene solutions) as well as the temperature lowering (from 278 to 221 K). The possible reasons and mechanisms of the non-radiative deactivation of locally excited Sā‚-states in the triads are discussed taking into account a close lying charge-separated state. The obtained experimental data are analyzed using the reduced density matrix formalism in the frame of Hakenā€“Stroblā€“Reineker approach. This model includes EM and ET processes as well as the dephasing of coherence between the excited electronic states of the triad. Ā© 2001 Elsevier Science B.V. All rights reserved

    Photoinduced electron transfer dynamics for self-assembled porphyrin arrays in solutions and films

    Get PDF
    Electronic excitation energy deactivation in self-assembled porphyrin triads has been studied by the time correlated single photon counting technique as a function of the solvent polarity (toluene-acetone mixtures), temperature (77-350 K), and mutual spatial arrangement of the donor and acceptor subunits. The donor (Zn-octaethylporphyrin chemical dimer) fluorescence quenching with time constant of 1.7Ć·10 ps is due to competing energy migration and electron transfer processes to the acceptor (dipyridyl substituted tetrapyrrole extra-ligand). The quenching of the acceptor fluorescence (by ~ 1.3ā€“1.6 times) does not significantly depend on the mutual spatial arrangement of the triad subunits and increases with the solvent polarity rising and the decrease of the temperature. The obtained experimental data are analyzed using the reduced density matrix formalism in the frame of Haken-Strobl-Reineker approach taking into account the energy transfer, charge separation, and the dephasing of coherence between the excited electronic states of the triad

    Position statement and updated international guideline for safe and effective whole-body electromyostimulation training-the need for common sense in WB-EMS application

    Get PDF
    Whole-Body Electromyostimulation (WB-EMS) is a training technology that enables simultaneous stimulation of all the main muscle groups with a specific impulse intensity for each electrode. The corresponding time-efficiency and joint-friendliness of WB-EMS may be particularly attractive for people unable or unmotivated to conduct (intense) conventional training protocols. However, due to the enormous metabolic and musculoskeletal impact of WB-EMS, particular attention must be paid to the application of this technology. In the past, several scientific and newspaper articles reported severe adverse effects of WB-EMS. To increase the safety of commercial non-medical WB-EMS application, recommendations "for safe and effective whole-body electromyostimulation" were launched in 2016. However, new developments and trends require an update of these recommendations to incorporate more international expertise with demonstrated experience in the application of WB-EMS. The new version of these consensus-based recommendations has been structured into 1) "general aspects of WB-EMS", 2) "preparation for training", recommendations for the 3) "WB-EMS application" itself and 4) "safety aspects during and after training". Key topics particularly addressed are 1) consistent and close supervision of WB-EMS application, 2) mandatory qualification of WB-EMS trainers, 3) anamnesis and corresponding consideration of contraindications prior to WB-EMS, 4) the participant's proper preparation for the session, 5) careful preparation of the WB-EMS novice, 6) appropriate regeneration periods between WB-EMS sessions and 7) continuous interaction between trainer and participant at a close physical distance. In summary, we are convinced that the present guideline will contribute to greater safety and effectiveness in the area of non-medical commercial WB-EMS application

    Calcitonin substitution in calcitonin deficiency reduces particle-induced osteolysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Periprosthetic osteolysis is a major cause of aseptic loosening in joint arthroplasty. This study investigates the impact of CT (calcitonin) deficiency and CT substitution under in-vivo circumstances on particle-induced osteolysis in <it>Calca </it>-/- mice.</p> <p>Methods</p> <p>We used the murine calvarial osteolysis model based on ultra-high molecular weight polyethylene (UHMWPE) particles in 10 C57BL/6J wild-type (WT) mice and twenty <it>Calca </it>-/- mice. The mice were divided into six groups: WT without UHMWPE particles (Group 1), WT with UHMWPE particles (Group 2), <it>Calca </it>-/- mice without UHMWPE particles (Group 3), <it>Calca </it>-/- mice with UHMWPE particles (Group 4), <it>Calca </it>-/- mice without UHMWPE particles and calcitonin substitution (Group 5), and <it>Calca </it>-/- mice with UHMWPE particle implantation and calcitonin substitution (Group 6). Analytes were extracted from serum and urine. Bone resorption was measured by bone histomorphometry. The number of osteoclasts was determined by counting the tartrate-resistant acid phosphatase (TRACP) + cells.</p> <p>Results</p> <p>Bone resorption was significantly increased in <it>Calca </it>-/- mice compared with their corresponding WT. The eroded surface in <it>Calca </it>-/- mice with particle implantation was reduced by 20.6% after CT substitution. Osteoclast numbers were significantly increased in <it>Calca </it>-/- mice after particle implantation. Serum OPG (osteoprotegerin) increased significantly after CT substitution.</p> <p>Conclusions</p> <p>As anticipated, <it>Calca </it>-/- mice show extensive osteolysis compared with wild-type mice, and CT substitution reduces particle-induced osteolysis.</p

    Non-equivalence of Wnt and R-spondin ligands during Lgr5+ intestinal stem-cell self-renewal

    Get PDF
    The canonical Wnt/Ī²-catenin signaling pathway governs diverse developmental, homeostatic and pathologic processes. Palmitoylated Wnt ligands engage cell surface Frizzled (Fzd) receptors and Lrp5/6 co-receptors enabling Ī²-catenin nuclear translocation and Tcf/Lef-dependent gene transactivation1ā€“3. Mutations in Wnt downstream signaling components have revealed diverse functions presumptively attributed to Wnt ligands themselves, although direct attribution remains elusive, as complicated by redundancy between 19 mammalian Wnts and 10 Fzds1 and Wnt hydrophobicity2,3. For example, individual Wnt ligand mutations have not revealed homeostatic phenotypes in the intestinal epithelium4, an archetypal canonical Wnt pathway-dependent rapidly self-renewing tissue whose regeneration is fueled by proliferative crypt Lgr5+ intestinal stem cells (ISCs)5ā€“9. R-spondin ligands (Rspo1ā€“4) engage distinct Lgr4-6 and Rnf43/Znrf3 receptor classes10ā€“13, markedly potentiate canonical Wnt/Ī²-catenin signaling and induce intestinal organoid growth in vitro and Lgr5+ ISCs in vivo8,14ā€“17. However, the interchangeability, functional cooperation and relative contributions of Wnt versus Rspo ligands to in vivo canonical Wnt signaling and ISC biology remain unknown. Here, we deconstructed functional roles of Wnt versus Rspo ligands in the intestinal crypt stem cell niche. We demonstrate that the default fate of Lgr5+ ISCs is lineage commitment, escape from which requires both Rspo and Wnt ligands. However, gain-of-function studies using Rspo versus a novel non-lipidated Wnt analog reveal qualitatively distinct, non-interchangeable roles for these ligands in ISCs. Wnts are insufficient to induce Lgr5+ ISC self-renewal, but rather confer a basal competency by maintaining Rspo receptor expression that enables Rspo to actively drive and specify the extent of stem cell expansion. This functionally non-equivalent yet cooperative interplay between Wnt and Rspo ligands establishes a molecular precedent for regulation of mammalian stem cells by distinct priming and self-renewal factors, with broad implications for precision control of tissue regeneration

    Deep sequencing of gastric carcinoma reveals somatic mutations relevant to personalized medicine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Globally, gastric cancer is the second most common cause of cancer-related death, with the majority of the health burden borne by economically less-developed countries.</p> <p>Methods</p> <p>Here, we report a genetic characterization of 50 gastric adenocarcinoma samples, using affymetrix SNP arrays and Illumina mRNA expression arrays as well as Illumina sequencing of the coding regions of 384 genes belonging to various pathways known to be altered in other cancers.</p> <p>Results</p> <p>Genetic alterations were observed in the WNT, Hedgehog, cell cycle, DNA damage and epithelial-to-mesenchymal-transition pathways.</p> <p>Conclusions</p> <p>The data suggests targeted therapies approved or in clinical development for gastric carcinoma would be of benefit to ~22% of the patients studied. In addition, the novel mutations detected here, are likely to influence clinical response and suggest new targets for drug discovery.</p

    Periprosthetic osteolysis after total hip replacement: molecular pathology and clinical management

    Get PDF
    Periprosthetic osteolysis is a serious complication of total hip replacement (THR) in the medium to long term. Although often asymptomatic, osteolysis can lead to prosthesis loosening and periprosthetic fracture. These complications cause significant morbidity and require complex revision surgery. Here, we review advances in our understanding of the cell and tissue response to particles produced by wear of the articular and non-articular surfaces of prostheses. We discuss the molecular and cellular regulators of osteoclast formation and bone resorptive activity, a better understanding of which may lead to pharmacological treatments for periprosthetic osteolysis. We describe the development of imaging techniques for the detection and measurement of osteolysis around THR prostheses, which enable improved clinical management of patients, provide a means of evaluating outcomes of non-surgical treatments for periprosthetic osteolysis, and assist in pre-operative planning for revision surgery. Finally, there have been advances in the materials used for bearing surfaces to minimise wear, and we review the literature regarding the performance of these new materials to date.Donald W. Howie, Susan D. Neale, David R. Haynes, Oksana T. Holubowycz, Margaret A. McGee, Lucian B. Solomon, Stuart A. Callary, Gerald J. Atkins, David M. Findla

    DevilĀ“s Claw (Harpagophytum procumbens) from Southern Africa: sustainable use by cultivation combined with controlled harvesting in semi-wild populations

    No full text
    Devilā€™s claw (Harpagophytum procumbens), a plant well adapted to the desert conditions of the Kalahari in Southern Africa, has been shown to have anti-inflammatory properties. The herb used is the sliced and dried secondary root tuber developing from the side roots of the succulent main root containing harpagoside as active ingredient. Because the herb is usually collected from the wild the harvesting method used in the past cannot sustain demand on the long term. Experiences of a project for cultivation and sustainable harvest of Harpagophytum in the Kalahari of South Africa paralleled by intensive ecological research will be presented. Methods were established to cultivate the plant and also to transfer gained knowledge to the local communities. The most important step is the training of harvesting methods in the collection of wildgrown tubers and how to avoid adulterants. The cultivation success was achieved by developing an environmentally suitable ā€˜rain-feed systemā€™ on vegetation-free stripes and successful propagation methods. The main aim of a parallel Scientific Support Project in Ecology was to find out the optimum ecological conditions of Harpagophytum by research in eco-physiology as well as factors influencing yield of tubers and harpagoside content
    • ā€¦
    corecore