239 research outputs found

    Sensitivity of Geoelectrical Measurements to the Presence of Bacteria in Porous Media

    Get PDF
    We investigated the sensitivity of low-frequency electrical measurements (0.1-1000 Hz) to (1) microbial cell density, (2) live and dead cells, and (3) microbial attachment onto mineral surfaces of clean quartz sands and iron oxide-coated sands. Three strains of Pseudomonas aeruginosa PAO1 (wild type and rhlA and pilA mutant) with different motility and attachment properties were used. Varying concentrations of both live and dead cells of P. aeruginosa wild type in sand columns showed no effect on the real conductivity component (σ′). However, the imaginary conductivity component (σ″) increased linearly with increasing concentrations of live cells in sand columns, whereas minimal changes were observed with different concentrations of dead cells. A strong power law relationship was observed between σ″ and the number of cells adsorbed onto sand grain surfaces with the rhlA mutant of P. aeruginosa displaying a higher power law exponent compared to the wild type and pilA mutant. In addition, power law exponents were greater in columns with iron oxide-coated sands compared to clean quartz sands. Minimal changes were observed on the σ′ due to the attachment of P. aeruginosa cells onto sands. We relate the measured low-frequency electrical responses to (1) the distinct electrical properties of live cells and (2) the density of cells attached to mineral surfaces enhancing the surface roughness of sand grains and hence the polarization response. The information obtained from this study enhances our interpretation of microbially induced geoelectrical responses in biostimulated geologic media and may have implications for microbial transport studies

    Investigating the Geoelectrical Response of Hydrocarbon Contamination Undergoing Biodegradation

    Get PDF
    A newly proposed geoelectrical model for hydrocarbon contaminated sites predicts high conductivities coincident with the contaminated zone as opposed to the traditionally accepted low conductivity. The model attributes the high conductivities to mineral weathering resulting from byproducts of microbial redox processes. To evaluate this conductive model, in situ vertical conductivity measurements were acquired from a light non-aqueous phase liquid (LNAPL) contaminated site. The results showed high conductivities coincident with the zone of contamination and within the smear zone influenced by seasonal water table fluctuations. We infer this zone as an active zone of biodegradation and suggest significant microbial degradation under partially water saturated conditions. A simple Archie\u27s Law analysis shows large pore water conductivities necessary to reproduce the bulk conductivity measured at the contaminated location. This study supports the conductive layer model and demonstrates the potential of geoelectrical investigations for assessing microbial degradation of LNAPL impacted soils

    Temporal Geophysical Signatures from Contaminant-Mass Remediation

    Get PDF
    We have previously documented changes in bulk electrical conductivity, self-potential (SP), and ground-penetrating-radar (GPR) reflections in a field setting caused by biogeochemical transformations of hydrocarbon-contaminated media. These transformations are associated with hydrocarbon biodegradation. The results of surface geophysical surveys acquired in 1996, 2003, and 2007 document changes in geophysical signatures associated with removing hydrocarbon mass in the contaminated zone. Initial investigations in 1996 showed that relative to background, the contaminated area was characterized by higher bulk electrical conductivity, positive SP anomaly, and attenuated GPR reflections. Repeated surveys in 2003 and 2007 over the contaminated area showed that in 2007, the bulk electrical conductivity had reverted to near-background conditions, the positive SP anomaly became more negative, and the zone of attenuated GPR reflections showed increased signal strength. Removal of hydrocarbon mass in the vadose zone over the plume by a soil vapor-extraction system installed in 2001 was primarily responsible for the changing geophysical responses. Although chemical data from groundwater showed a 3-m-thick conductive plume in 2007, the plume was not imaged by electrical resistivity. Forward modeling suggests that apparent bulk electrical conductivity of the saturated zone plume has to be three to five times higher than background values to be imaged by electrical resistivity. We suggest that removing hydrocarbon-contaminant-mass reduction by natural or engineered bioremediation can be imaged effectively by temporal geophysical surveys

    High-Resolution Magnetic Susceptibility Measurements for Investigating Magnetic Mineral Formation during Microbial Mediated Iron Reduction

    Get PDF
    Disimilatory iron-reducing bacteria play an important role in the reduction of Fe(hydr)oxides and the production of secondary solid-iron mineral phases that can have magnetic properties. Magnetic susceptibility can therefore play an important role in identifying zones where microbial-mediated iron reduction is occurring. We investigated the magnetic susceptibility variations in a hydrocarbon-contaminated aquifer where methanogenesis and iron reduction are the main biogeochemical processes. Our objectives are to (1) determine the variability of magnetic susceptibility, (2) determine the hydrobiogeochemical controls on the magnetic susceptibility variability, and (3) evaluate the use of magnetic susceptibility as a viable technique for identifying zones where the coupling of iron and organic carbon cycling is occurring. Magnetic susceptibility data were acquired down 11 boreholes within contaminated and uncontaminated locations. We show that magnetic susceptibility values for boreholes within the free phase plume are higher than values for boreholes within the dissolved phase plume and background. Magnetic susceptibility values are highest within the zone of water table fluctuation with peaks predominantly occurring at the highest water table marks and are also coincident with high concentrations of dissolved Fe(II) and organic carbon content, suggesting that the zone of water table fluctuation is most biologically active. High magnetic susceptibility values within the vadose zone above the free phase plume are coincident with a zone of methane depletion suggesting aerobic or anaerobic oxidation of methane coupled to iron reduction. Our results suggest that magnetic susceptibility can be used as a viable tool in iron and carbon cycling studies

    Microbial-Induced Heterogeneity in the Acoustic Properties of Porous Media

    Get PDF
    It is not known how biofilms affect seismic wave propagation in porous media. Such knowledge is critical for assessing the utility of seismic techniques for imaging biofilm development and their effects in field settings. Acoustic wave data were acquired over a two-dimensional region of a microbial-stimulated sand column and an unstimulated sand column. The acoustic signals from the unstimulated column were relatively uniform over the 2D scan region. The data from the microbial-stimulated column exhibited a high degree of spatial heterogeneity in the acoustic wave amplitude, with some regions exhibiting significant increases in attenuation while others exhibited decreases. Environmental scanning electron microscopy showed differences in the structure of the biofilm between regions of increased and decreased acoustic wave amplitude. We conclude from these observations that variations in microbial growth and biofilm structure cause heterogeneity in the elastic properties of porous media with implications for the validation of bioclogging models

    Magnetic Susceptibility As a Proxy for Investigating Microbially Mediated Iron Reduction

    Get PDF
    We investigated magnetic susceptibility (MS) variations in hydrocarbon contaminated sediments. Our objective was to determine if MS can be used as an intrinsic bioremediation indicator due to the activity of iron-reducing bacteria. A contaminated and an uncontaminated core were retrieved from a site contaminated with crude oil near Bemidji, Minnesota and subsampled for MS measurements. The contaminated core revealed enriched MS zones within the hydrocarbon smear zone, which is related to iron-reduction coupled to oxidation of hydrocarbon compounds and the vadose zone, which is coincident with a zone of methane depletion suggesting aerobic or anaerobic oxidation of methane is coupled to iron-reduction. The latter has significant implications for methane cycling. We conclude that MS can serve as a proxy for intrinsic bioremediation due to the activity of iron-reducing bacteria iron-reducing bacteria and for the application of geophysics to iron cycling studies

    Electrical Resistivity Imaging for Long-Term Autonomous Monitoring of Hydrocarbon Degradation: Lessons from the Deepwater Horizon Oil Spill

    Get PDF
    Conceptual models for the geophysical responses associated with hydrocarbon degradation suggest that the long-term evolution of an oil plume will result in a more conductive anomaly than the initial contamination. In response to the Deepwater Horizon (DH) oil spill into the Gulf of Mexico in 2010, an autonomous resistivity monitoring system was deployed on Grand Terre, Louisiana, in an attempt to monitor natural degradation processes in hydrocarbon-impacted beach sediments of this island. A 48-electrode surface array with a 0.5-m spacing was installed to obtain twice-daily images of the resistivity structure of the shallow subsurface impacted by oil. Over the course of approximately 18 months, we observed a progressive decrease in the resistivity of the DH spill-impacted region. Detailed analysis of pixel/point resistivity variation within the imaged area showed that long-term decreases in resistivity were largely associated with the DH-impacted sediments. A microbial diversity survey revealed the presence of hydrocarbon-degrading organisms throughout the test site. However, hydrocarbon degradation activity was much higher in the DH-impacted locations compared to nonimpacted locations, suggesting the presence of active hydrocarbon degraders, supporting biodegradation processes. The results of this long-term monitoring experiment suggested that resistivity might be used to noninvasively monitor the long-term degradation of crude oil spills

    In-situ Apparent Conductivity Measurements and Microbial Population Distribution at a Hydrocarbon-Contaminated Site

    Get PDF
    We investigated the bulk electrical conductivity and microbial population distribution in sediments at a site contaminated with light nonaqueous-phase liquid (LNAPL). The bulk conductivity was measured using in-situ vertical resistivity probes; the most probable number method was used to characterize the spatial distribution of aerobic heterotrophic and oil-degrading microbial populations. The purpose of this study was to assess if high conductivity observed at aged LNAPL-impacted sites may be related to microbial degradation of LNAPL. The results show higher bulk conductivity coincident with LNAPL-impacted zones, in contrast to geoelectrical models that predict lower conductivity in such zones. The highest bulk conductivity was observed to be associated with zones impacted by residual and free LNAPL. Data from bacteria enumeration from sediments close to the resistivity probes show that oil-degrading microbes make up a larger percentage (5-55%) of the heterotrophic microbial community at depths coincident with the higher conductivity compared to ∼5% at the uncontaminated location. The coincidence of a higher percentage of oil-degrading microbial populations in zones of higher bulk conductivity suggests that the higher conductivity in these zones may result from increased fluid conductivity related to microbial degradation of LNAPL, consistent with geochemical studies that suggest that intrinsic biodegradation is occurring at the site. The findings from this study point to the fact that biogeochemical processes accompanying biodegradation of contaminants can potentially alter geoelectrical properties of the subsurface impacted media
    • …
    corecore