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[1] A newly proposed geoelectrical model for hydrocarbon
contaminated sites predicts high conductivities coincident
with the contaminated zone as opposed to the traditionally
accepted low conductivity. The model attributes the
high conductivities to mineral weathering resulting from
byproducts of microbial redox processes. To evaluate
this conductive model, in situ vertical conductivity
measurements were acquired from a light non-aqueous
phase liquid (LNAPL) contaminated site. The results
showed high conductivities coincident with the zone of
contamination and within the smear zone influenced by
seasonal water table fluctuations. We infer this zone as an
active zone of biodegradation and suggest significant
microbial degradation under partially water saturated
conditions. A simple Archie’s Law analysis shows large
pore water conductivities necessary to reproduce the bulk
conductivity measured at the contaminated location. This
study supports the conductive layer model and demonstrates
the potential of geoelectrical investigations for assessing
microbial degradation of LNAPL impacted soils. INDEX

TERMS: 5109 Physical Properties of Rocks: Magnetic and electrical

properties; 0915 Exploration Geophysics: Downhole methods;

1831 Hydrology: Groundwater quality. Citation: Werkema, Jr.,

D. D., E. A. Atekwana, A. L. Endres, W. A. Sauck, and D. P.

Cassidy, Investigating the geoelectrical response of hydrocarbon

contamination undergoing biodegradation, Geophys. Res. Lett.,

30(12), 1647, doi:10.1029/2003GL017346, 2003.

1. Introduction

[2] Studies conducted on the geophysical detection of
hydrocarbon contaminants have based interpretation on the
insulating layer model [e.g., Lien and Enfield, 1998]. This
interpretation is intuitive as hydrocarbons that displace the
groundwater are electrically resistive. However, recent find-
ings at sites impacted with hydrocarbons for decades show a
conductive response, characterized by low apparent resis-
tivities/high conductivities [e.g., Atekwana et al., 2000] and
attenuated GPR reflections [e.g., Bermejo et al., 1997].

[3] In view of these field observations, a new conceptual
model (herein named the conductive layer model) linking
the conductive response to the effects of biodegradation
processes has been proposed [Sauck, 2000]. High bulk
conductivity is hypothesized to be caused by high pore
water conductivity due to higher total dissolved solids
(TDS) in groundwater which resulted from enhanced mine-
ral weathering accompanying the production of carbonic
and organic acids during biodegradation. The role of organic
acids and microbial activity in promoting mineral dissolu-
tion in hydrocarbon contaminated aquifers is well docu-
mented [e.g., McMahon et al., 1995]. This study is driven to
evaluate the conductive and insulating layer models and to
advance the understanding of the geoelectrical response at a
site impacted with light non-aqueous phase liquid (LNAPL)
contamination.
[4] Vertical conductivity profiles are used to measure the

vertical geoelectrical distribution. Because of the difficult
task in geochemical sampling from the immiscible contami-
nant zone under saturated and partially saturated conditions,
vertical geoelectrical profiles may provide an indirect ob-
servation of the processes in this zone. The profiles are
analyzed using simple Archie’s Law relationships to com-
pare the two competing models.
[5] The study site is adjacent to a former refinery, the

Crystal Refinery in Carson City, Michigan, which leaked
mostly jet and diesel fuel, since 1945. The geology consists
of 4.5 to 6.1 m of glacially derived unconsolidated fine to
medium grained sands, coarsening at and below the water
table to gravel and underlain by a 0.61 to 3.05 m thick clay
aquitard unit. Due to topographic variations, depth to
groundwater ranges from approximately 1 to 4 meters.
Contamination occurs in the residual, free, and dissolved
phases as defined previously [U.S. EPA, 1992] and applied
to LNAPL. In 1994, the free phase plume (referred here as
the plume core) was approximately 229 m long and aver-
aged 82 m wide with a thickness between 0.3 to 0.6 m and
an estimated volume of 167,200 liters [Snell Environmental
Group, 1994]. The fringe zone, characterized by residual
and dissolved phase hydrocarbons, is approximately 70
meters beyond the edge of the plume core.
[6] Recent geochemical investigations suggest that intrin-

sic biodegradation is occurring in groundwater at the site
[Legall, 2002]. Microbial studies of soil cores collected
monthly for one year and completed to depths within the
saturated zone have documented microorganisms capable of
degrading hydrocarbon and show orders of magnitude
increase in alkane degrading microorganisms in the hydro-
carbon impacted zones [Cassidy et al., 2002; Werkema et
al., 2000]. Methanogenesis is the dominant redox process
within the core of the contamination, while sulfate, iron, and
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manganese reduction occur at the fringes of the contamina-
tion [Legall, 2002]. Volatile organic acids and biosurfactants
have been detected in the contaminated groundwater at this
site [Cassidy et al., 2002].

2. Results

[7] Apparent resistivity data were collected using in situ
vertical resistivity probes (VRPs) installed in contaminated
and uncontaminated portions of the aquifer. A total of ten
VRPs (4 in free phase, 4 in residual and dissolved, and 2 in
uncontaminated locations) were installed from the ground
surface to depths at or near the top of the clay aquitard.
Measurements were collected monthly for 15 months using
a Wenner array with 5.08 cm spacing and collected at 5.08
cm increments. The results are repeatable, showing some
fluctuations due to natural hydrologic events. Those data,
the collection methodology, sediment cores, grain size
analysis, LNAPL distribution, and the water level data have
been described elsewhere [Werkema, 2002]. Representative
VRP profiles from September 2000 are shown in terms of
conductivity in Figures 1 and 2. Those figures include the
grain size and LNAPL distribution from cores collected
within a 50–100 cm radius from the VRP installations
[Werkema, 2002].
[8] The grain size distribution determined the percentage

gravel (>4.8 mm), sand (4.8–0.06 mm), and silt/clay
(<0.06 mm) fractions after drying to a constant weight at
105�C and using sampling intervals of either 15 or 30 cm.
Figure 1 is the conductivity profile within the core of the
plume. At approximately 225.7 m elevation and coincident
with the first encounter of contamination, the conductivity
profile (Figure 1c) shows a steep increase from approximate-
ly 0.3 mS/m to 15 mS/m over a 0.5 m elevation change.
Decreasing in elevation, the conductivity profile progres-
sively increases reaching a maximum of approximately 37
mS/m at 224.9 m. This point correlates with the free (i.e.,
floating) LNAPL layer (Figure 1b) and occurs near the
water table-free LNAPL interface. Below this conductivity
maximum, the profile decreases to approximately 18 mS/m

through the saturated zone that contains dissolved LNAPL
and a zone of submerged residual LNAPL (Figure 1b). This
subaqeuous immiscible phase represents LNAPL adsorbed
on the soil grains at lower water levels [Werkema, 2002]
that occurs from 224.8 m to approximately 224.5 m
elevation. The grain size data in Figure 1a shows a change
in grain size from predominantly sand to sand and gravel
occurring at 224.5 m elevation. This change occurs 0.5 m
below the zone of maximum conductivity suggesting that
the conductivity profile is not significantly affected by
variations in lithology. The clay aquitard was reached by
the VRP at approximately 223.7 m.
[9] The conductivity profile at an uncontaminated loca-

tion (Figure 2c) shows a gradual increase due to the
presence of the transition zone above the saturated zone
(�225 m). Below the water table, the conductivity values
remain at the relatively constant maximum value of
approximately 17 mS/m. Those data reveal no steep con-
ductivity gradients or zone of maximum. In fact, over a two
fold increase in maximum conductivity was observed at the
contaminated location relative to this uncontaminated loca-
tion. This location also shows a uniform grain size distri-
bution until approximately 224 m elevation (Figure 2a) that
appears to have little affect on the conductivity profile. The
clay aquitard was not reached by this VRP.

3. Analysis

[10] The empirical Archie’s Law [Archie, 1942] is given
by

se ¼ afm Snw sw; ð1Þ

where se is the effective conductivity of the medium, f the
porosity, Sw the water saturation, sw the pore water
conductivity, m the cementation exponent, n the saturation
exponent and a is an empirical factor. Since grain size
analysis revealed no appreciable amounts of silt or clay
(Figures 1a and 2a) Archie’s Law is applicable. To analyze
the conductivity profiles at both locations, we have assumed
the only variables are water saturation (Sw) and pore water

Figure 1. Profiles for the Contaminated Location, (a)
Grain Size Distribution, (b) LNAPL Distribution, (c)
Conductivity Profile.

Figure 2. Profiles for the Uncontaminated Location, (a)
Grain Size Distribution, (b) LNAPL Distribution, (c)
Conductivity Profile.
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conductivity (sw). This approach implicitly assumes the
porosity and pore structure are uniform throughout the
aquifer (i.e., f, a, m and n are constants).
[11] Our first analysis assumes changes in conductivity

were due entirely to variations in Sw while sw remains
constant. This approach is consistent with the insulating
layer model for LNAPL pools as the resistive LNAPL
displaces the more conductive water decreasing water
saturation. Consider the effective conductivity, se(z), at
elevation z along the VRP profile and the effective conduc-
tivity in the uncontaminated saturated zone, se

sat. From
equation (1) the apparent water saturation Sw(z) required
to account for the effective conductivity se(z) is given by

Sw zð Þ ¼ n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
se zð Þ ssate

�q
: ð2Þ

When no independent information is available, n is
commonly assumed to be 2 [Schön, 1996]. The unconta-
minated saturated zone conductivity profile suggests that
the average effective conductivity is se

sat = 17.4 mS/m.
[12] Figure 3a, shows excessively high calculated water

saturation Sw(z) values (up to 150%) that are coincident with
the zone of free LNAPL that occurs near the water table.
These excessively high water saturation values remain
greater than 100% throughout the free LNAPL layer and
below through the subaqeuous residual LNAPL layer and
dissolved LNAPL zone to approximately 224 m elevation.
In comparison, Figure 3b from the uncontaminated site
clearly shows a typical water saturation profile. While
Figure 1a does show grain size increase at approximately
224.6 m, which may result in an increase in the porosity and
possibly contribute to the increasing conductivity, we note
that this elevation is well below the zone of enhanced
conductivity as presented in Figure 4.
[13] According to the insulating layer model, unrealisti-

cally high water saturations (i.e., �150%) are required to
account for the VRP conductivity measurements in the
contaminated zone. This is inconsistent with the displace-
ment of pore water by LNAPL which is expected to lower
the water saturation. Hence, we infer that varying water
saturation in the insulating layer model cannot account for
the anomalously high conductivity in the contaminated
zone.
[14] Next, we examine the effects of changing pore water

conductivity, sw. To perform this analysis, we assume the

water saturation profile relative to the water table, Sw(z), is
the same at both locations. Hence, the conductivity profiles
for each location were aligned such that the water table
positions were coincident prior to performing this analysis.
[15] It follows from Archie’s Law that the pore water

conductivity ratio between the contaminated and uncontam-
inated locations (sw

c (z) and sw
uc(z), respectively) at a given

depth relative to the water table is given by

scw zð Þ
sucw zð Þ ¼

sce zð Þ
suce zð Þ ; ð3Þ

where se
c(z) and se

uc(z) are the effective conductivity
profiles at the contaminated and uncontaminated locations.
Obviously, our assumption about Sw(z) will lead to an
overestimate of Sw in the contaminated aquifer material
where the immiscible contaminant has displaced the pore
water. This approach will underestimate sw

c (z) over the
contaminated region. Hence, this analysis yields a lower
limit for the pore water conductivity in the LNAPL
impacted zone required to satisfy the conductivity
measurements.
[16] The estimated pore water conductivity ratio, sw

c (z)/
sw
uc(z) is presented in Figure 4; four important observations

are made from this figure. First, the highest estimated pore
water conductivity suggests a 5.5 fold increase over equiv-
alent uncontaminated locations. Second, the zone of elevated
conductivity (approximately 1.25 m thick) occurs within the
tension saturated zone and extends into the upper parts of
the saturated zone (224.5–225.75 m). This region of ele-
vated conductivity is essentially coincident with the hydro-
carbon smear zone resulting from water table fluctuations.
Third, the zone of maximum elevated conductivity occurs
above the water table and within the upper residual LNAPL
zone (225.7–225.2 m). If the high conductivity is the result
of biodegradational processes, then we infer from this
observation that the residual product zone is the site of
most active biodegradation. Previous investigations at this
contaminated location support this inference and show the
alkane degrading population maximum [Werkema et al.,
2002]. Additionally, geochemical studies show an influx of
nutrients which could result in greater biological activity

Figure 3. Estimated Water Saturation Profiles (a) Con-
taminated Location including LNAPL Distribution. (b)
Uncontaminated Location. Vertical line shows Sw = 100%.

Figure 4. Estimated Pore Water Conductivity Ratio
Profile: Contaminated/Uncontaminated. Vertical line at 1
is the reference base line.
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and is consistent with high CO2 concentrations observed
within this zone [Legall, 2002]. Lastly, the spatial variability
(vertically) of the conductivity profile within the zone of
LNAPL impact corresponds to the elevations of the differ-
ent LNAPL zones and not to changes in grain size.

4. Discussion and Conclusions

[17] This study found that variations in water saturation
(i.e., the insulating model) could not account for the
observed conductivity profiles. Further, analysis found the
conductive layer model required a minimum 5.5 fold
increase in pore water conductivity relative to the uncon-
taminated location to explain the conductivity profiles. This
increase is consistent with a laboratory slurry experiment
that showed a factor of 6 increase [Cassidy et al., 2001]. We
further show that for the contaminated location, less than a
1.5 fold increase in pore water conductivity occurs below
the water table, which agrees with geochemistry data that
shows groundwater conductance �1.4 times greater [Legall,
2002]. Legall [2002] further showed elevated concentra-
tions of Si, Ca, Mg, Na, HCO3

� at the contaminated
locations relative to uncontaminated conditions. This is
consistent with enhanced dissolution of the aquifer miner-
als. The above findings are supported by McMahon et al.
[1995] that showed the concentration of dissolved organic
acids from microbial degradation of hydrocarbons positive-
ly correlated with dissolved silica. Finally, elevated popu-
lations of oil degrading bacteria have been documented at
this field site coincident with the zone of elevated conduc-
tivity [Werkema et al., 2000], which suggest a possible link
between the conductive pore water and the biological
activity.
[18] The conductivity increase correlated with locations

of LNAPL contamination is observed at other sites where
the geology is uniform sand [Bermejo et al., 1997] and
heterogeneous glacial deposits [Atekwana et al., 2002].
Therefore, this conductivity increase is not unique to this
site or this work. Furthermore, a conductivity increase
associated with LNAPL contamination has recently been
reported by other investigators [Shevnin et al., 2003; Brad-
ford, 2003].
[19] The findings of this study not only corroborate the

conductive layer model and provide an indication into the
biologically driven mechanism, they suggest that the vertical
position of the high conductivity anomaly occurs in partially
water saturated conditions above the water table. The fluc-
tuating water table likely smears the LNAPL potentially
making it more readily available for microbial activity [Lee
et al., 2001]. If the magnitude of conductivity observed in
this study is an indirect measure of biological activity
through changes in pore water geochemistry, then our
geophysical data suggests that the zone of most active
biodegradation occurs above the water table and not below
as is conventionally studied. Thus, this zone of enhanced
conductivity, observed geophysically, can be more effective-
ly investigated for geochemical and/or biological processes.
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