372 research outputs found

    From solid solution to cluster formation of Fe and Cr in α\alpha-Zr

    Full text link
    To understand the mechanisms by which Fe and Cr additions increase the corrosion rate of irradiated Zr alloys, a combination of experimental (atom probe tomography, x-ray diffraction and thermoelectric power measurements) and modelling (density functional theory) techniques are employed to investigate the non-equilibrium solubility and clustering of Fe and Cr in binary Zr alloys. Cr occupies both interstitial and substitutional sites in the {\alpha}-Zr lattice, Fe favours interstitial sites, and a low-symmetry site that was not previously modelled is found to be the most favourable for Fe. Lattice expansion as a function of alloying concentration (in the dilute regime) is strongly anisotropic for Fe additions, expanding the cc-axis while contracting the aa-axis. Defect clusters are observed at higher solution concentrations, which induce a smaller amount of lattice strain compared to the dilute defects. In the presence of a Zr vacancy, all two-atom clusters are more soluble than individual point defects and as many as four Fe or three Cr atoms could be accommodated in a single Zr vacancy. The Zr vacancy is critical for the increased solubility of defect clusters, the implications for irradiation induced microstructure changes in Zr alloys are discussed.Comment: 15 pages including figure, 9 figures, 2 tables. Submitted for publication in Acta Mater, Journal of Nuclear Materials (2015

    Preliminary modelling of crack nucleation and propagation in SiC/SiC accident-tolerant fuel during routine operational transients using peridynamics

    Get PDF
    Silicon carbide fibre in silicon carbide matrix composites (SiC/SiC) are a promising cladding for use in accident tolerant fuels (ATF) in current light water reactor (LWR) designs. However, as they are a radically different material from current metal clads, current thermomechanical simulation methods struggle to accurately predict their behaviour, especially regarding the potential development of cracks. Thus, a new peridynamic model for SiC/SiC cladding has been developed in the Abaqus finite element code. The material model was isotropic and considers matrix cracking and fibre pull-out. The thermal expansion, swelling and the degradation of the thermal conductivity are modelled under typical LWR irradiation conditions. The swelling on the outer surface is predicted to be greater than the inner surface due to the lower irradiation temperature, causing a tensile stress on the inside of the cladding; tension being more challenging for a ceramic than a metal. This stress increases during the decrease in power at the start of a typical pressurised water reactor refuelling outage and causes microcracking of the matrix on the cladding inner surface. In models without fibres, cracks would propagate through the cladding. If fibres are modelled, matrix cracking will extend to a depth of around 20% through the cladding from the inner surface, which is unlikely to be an acceptable design. If an inner monolith of SiC is additionally modelled, cracking propagates through the monolith and acts as a stress raiser for matrix cracking in the composite, and therefore does not constitute a design improvement. If an outer SiC monolith is modelled, fibre pull-out strain on the inner surface of the cladding was increased by just under 70%. No cracks are predicted in an outer monolith which may therefore remain gas-tight and thus a more suitable design. These predictions are consistent with experimental findings

    Understanding the importance of the energetics of Mn, Ni, Cu, Si and vacancy triplet clusters in bcc Fe

    Get PDF
    Numerous experimental studies have found the presence of (Cu)-Ni-Mn-Si clusters in neutron irradiated reactor pressure vessel steels, prompting concerns that these clusters could lead to larger than expected increases in hardening, especially at high fluences late in life. The mechanics governing clustering for the Fe-Mn-Ni-Si system are not well-known; state-of-the-art methods use kinetic Monte Carlo (KMC) parameterised by density functional theory (DFT) and thermodynamic data to model the time evolution of clusters. However, DFT based KMC studies have so far been limited to only pairwise interactions due to lack of DFT data. Here we explicitly calculate the binding energy of triplet clusters of Mn, Ni, Cu, Si and vacancies in bcc Fe using DFT to show that the presence of vacancies, Si, or Cu stabilises cluster formation, as clusters containing exclusively Mn and/or Ni are not energetically stable in the absence of interstitials. We further identify which clusters may be reasonably approximated as a sum of pairwise interactions, and which instead require an explicit treatment of the three-body interaction, showing that the three-body term can account for as much as 0.3 eV, especially for clusters containing vacancies

    Variation in ambulance call rates for care homes in Torbay, UK

    Get PDF
    Emergency ambulance calls represent one of the routes of emergency hospital admissions from care homes. We aimed to describe the pattern of ambulance call rates from care homes and identify factors predicting those homes calling for an ambulance most frequently. We obtained data from South Western Ambulance Service NHS Foundation Trust on 3138 ambulance calls relating to people aged 65 and over from care homes in the Torbay region between 1/4/12 and 31/7/13. We supplemented this with data from the Care Quality Commission (CQC) website on home characteristics and outcomes of CQC inspections. We used descriptive statistics to identify variation in ambulance call rates for residential and nursing homes and fitted negative binomial regression models to determine if call rates were predicted by home type (nursing versus residential), the five standards in the CQC reports, dementia care status or travel time to hospital. One hundred and forty-six homes (119 residential and 27 nursing) were included in the analysis. The number of calls made ranged from 1 to 99. The median number (IQR; range) of calls per resident per year was 0.51 (0.21 to 0.89; 0.03 to 2.45). Nursing homes had a lower call rate than residential homes (adjusted rate ratio (ARR) 0.29; 95% CI: 0.22 to 0.40 ; p<0.001); care homes failing the quality and suitability of management standard had a lower call rate compared to those who passed (ARR 0.67; 95% CI: 0.50 to 0.90; p=0.006); and homes specialising in dementia had a higher call rate compared to those not specialising (ARR 1.56; 95% CI: 1.23 to 1.96; p<0.001). These findings require replication in other regions to establish their generalisability and further investigation is required to determine the extent to which callrate variability reflects the different needs of resident populations or differences in care home policies and practice

    High temperature measurements and condensed matter analysis of the thermo-physical properties of ThO2

    No full text
    Values are presented for thermal conductivity, specific heat, spectral and total hemispherical emissivity of ThO2 (a potential nuclear fuel material) in a temperature range representative of a nuclear accident - 2000 K to 3050 K. For the first time direct measurements of thermal conductivity have been carried out on ThO2 at such high temperatures, clearly showing the property does not decrease above 2000 K. This could be understood in terms of an electronic contribution (arising from defect induced donor/acceptor states) compensating the degradation of lattice thermal conductivity. The increase in total hemispherical emissivity and visible/near-infrared spectral emissivity is consistent with the formation of donor/acceptor states in the band gap of ThO2. The electronic population of these defect states increases with temperature and hence more incoming photons (in the visible and near-infrared wavelength range) can be absorbed. A solid state physics model is used to interpret the experimental results. Specific heat and thermal expansion coefficient increase at high temperatures due to the formation of defects, in particular oxygen Frenkel pairs. Prior to melting a gradual increase to a maximum value is predicted in both properties. These maxima mark the onset of saturation of oxygen interstitial sites

    Accommodation of tin in tetragonal ZrO2

    Get PDF
    Atomic scale computer simulations using density functional theory were used to investigate the behaviour of tin in the tetragonal phase oxide layer on Zr-based alloys. The Sn×ZrSnZr× defect was shown to be dominant across most oxygen partial pressures, with Sn′′ZrSnZr″ charge compensated by V∙∙OVO•• occurring at partial pressures below 10−31 atm. Insertion of additional positive charge into the system was shown to significantly increase the critical partial pressure at which Sn′′ZrSnZr″ is stable. Recently developed low-Sn nuclear fuel cladding alloys have demonstrated an improved corrosion resistance and a delayed transition compared to Sn-containing alloys, such as Zircaloy-4. The interaction between the positive charge and the tin defect is discussed in the context of alloying additions, such as niobium and their influence on corrosion of cladding alloys

    Application of Weibull fracture strength distributions to modelling crack initiation behaviour in nuclear fuel pellets using peridynamics

    Get PDF
    The thermomechanical behaviour of uranium dioxide nuclear fuel pellets irradiated in a pressurised water reactor has been simulated using a two-dimensional application of bond-based peridynamics implemented in the Abaqus commercial finite element software. Near-surface bond failure, and hence crack initiation, were modelled assuming a probabilistic (variable) failure strain described by a Weibull distribution – with bond failure, and hence crack propagation, in the bulk of the fuel pellets modelled assuming a deterministic (fixed) failure strain. The measured dependency of the number of radial pellet cracks on heat generation rate per unit length – which we show cannot be reproduced by the common assumption in pellet modelling of a deterministic failure strain throughout the pellet volume – was accurately predicted when a size-scaled Weibull distribution with a modulus of 5 was used. However, this low modulus value was associated with the prediction of some cracks initiating away from the pellet surface, which is unphysical. Use of a Weibull modulus of 10 avoided this simulation artefact while still reproducing the experimentally observed dependency with reasonable accuracy

    The effect of pressure on hydrogen solubility in Zircaloy-4

    Get PDF
    The effect of pressure on the room temperature solubility of hydrogen in Zircaloy-4 was examined using synchrotron X-ray diffraction on small ground flake samples in a diamond anvil cell at pressures up to 20.9 GPa. Different combinations of hydrogen level/state in the sample and of pressure transmitting medium were examined; in all three experiments, it could be concluded that pressure resulted in the dissolution of δ hydrides and that interstitial hydrogen seemingly retards the formation of ω Zr. A pressure of around 9 GPa was required to halve the hydride fraction. These results imply that the effect of pressure is thermodynamically analogous to that of increasing temperature, but that the effect is small. The results are consistent with the volume per Zr atom of the α, δ and ω phases, with the bulk moduli of α and δ, and with previous measurements of the hydrogen site molar volumes in the α and δ phases. The results are interpreted in terms of their implication for our understanding of the driving forces for hydride precipitation at crack tips, which are in a region of hydrostatic tensile stress on the order of 1.5 GPa

    Peridynamic modelling of cracking in TRISO particles for high temperature reactors

    Get PDF
    A linear-elastic computer simulation (model) for a single particle of TRISO fuel has been built using a bond-based peridynamic technique implemented in the finite element code ‘Abaqus’. The model is able to consider the elastic and thermal strains in each layer of the particle and to simulate potential fracture both within and between layers. The 2D cylindrical model makes use of a plane stress approximation perpendicular to the plane modelled. The choice of plane stress was made by comparison of 2D and 3D finite element models. During an idealised ramp to normal operating power for a kernel of 0.267 W and a bulk fuel temperature of 1305 K, cracks initiate in the buffer near to the kernel-buffer interface and propagate towards the buffer-iPyC coating interface, but do not penetrate the iPyC and containment of the fission products is maintained. In extreme accident conditions, at around 600% (1.60 W) power during a power ramp at 100% power (0.267 W) per second, cracks were predicted to form on the kernel side of the kernel-buffer interface, opposite existing cracks in the buffer. These were predicted to then only grow further with further increases in power. The SiC coating was predicted to subsequently fail at a power of 940% (2.51 W), with cracks formed rapidly at the iPyC-SiC interface and propagating in both directions. These would overcome the containment to fission gas release offered by the SiC ‘pressure vessel’. The extremely high power at which failure was predicted indicates the potential safety benefits of the proposed high temperature reactor design based on TRISO fuel
    • …
    corecore