248 research outputs found
Persistent effects of in utero overnutrition on offspring adiposity: the Exploring Perinatal Outcomes among Children (EPOCH) study
Aims/hypothesis: We previously showed that intrauterine exposure to gestational diabetes mellitus (GDM) increases selected markers of adiposity in pre-pubertal adolescents. In the present study, we examined these associations in adolescence, and explored whether they are strengthened as the participants transition through puberty. Methods: Data from 597 individuals (505 unexposed, 92 exposed) participating in the longitudinal Exploring Perinatal Outcomes among Children (EPOCH) study in Colorado were collected at two research visits when the participants were, on average, 10.4 and 16.7 years old. Adiposity measures included BMI, waist/height ratio, and visceral and subcutaneous adipose tissue (as determined by MRI). Separate general linear mixed models were used to assess the longitudinal relationships between exposure to maternal GDM and each adiposity outcome. We tested whether the effect changed over time by including an interaction term between exposure and age in our models, and whether the associations were explained by postnatal behaviours. Results: Compared with unexposed participants, those exposed to maternal GDM had higher BMI (ÎČ = 1.28; 95% CI 0.35, 2.21; p < 0.007), waist/height ratio (ÎČ = 0.03; 95% CI 0.01, 0.04; p = 0.0004), visceral adipose tissue (ÎČ = 4.81; 95% CI 1.08, 8.54; p = 0.01) and subcutaneous adipose tissue (ÎČ = 35.15; 95% CI 12.43, 57.87; p < 0.003). The magnitude of these differences did not change over time and the associations did not appear to be explained by postnatal behaviours. Conclusions/interpretation: Our data provide further evidence that intrauterine exposure to maternal GDM is associated with increased offspring adiposity, an effect that appears early in life and tracks throughout adolescence. Efforts to prevent childhood obesity following intrauterine exposure to maternal GDM should target the prenatal or early life periods
Maternal Diet Quality During Pregnancy and Offspring Hepatic Fat in Early Childhood: The Healthy Start Study
Background: Overnutrition in utero may increase offspring risk of nonalcoholic fatty liver disease (NAFLD), but the specific contribution of maternal diet quality during pregnancy to this association remains understudied in humans. Objectives: This study aimed to examine the associations of maternal diet quality during pregnancy with offspring hepatic fat in early childhood (median: 5 y old, range: 4â8 y old). Methods: Data were from 278 motherâchild pairs in the longitudinal, Colorado-based Healthy Start Study. Multiple 24-h recalls were collected from mothers during pregnancy on a monthly basis (median: 3 recalls, range: 1â8 recalls starting after enrollment), and used to estimate maternal usual nutrient intakes and dietary pattern scores [Healthy Eating Index-2010 (HEI-2010), Dietary Inflammatory Index (DII), and Relative Mediterranean Diet Score (rMED)]. Offspring hepatic fat was measured in early childhood by MRI. Associations of maternal dietary predictors during pregnancy with offspring log-transformed hepatic fat were assessed using linear regression models adjusted for offspring demographics, maternal/perinatal confounders, and maternal total energy intake. Results: Higher maternal fiber intake and rMED scores during pregnancy were associated with lower offspring hepatic fat in early childhood in fully adjusted models [Back-transformed ÎČ (95% CI): 0.82 (0.72, 0.94) per 5 g/1000 kcal fiber; 0.93 (0.88, 0.99) per 1 SD for rMED]. In contrast, higher maternal total sugar and added sugar intakes, and DII scores were associated with higher offspring hepatic fat [Back-transformed ÎČ (95% CI): 1.18 (1.05, 1.32) per 5% kcal/d added sugar; 1.08 (0.99, 1.18) per 1 SD for DII]. Analyses of dietary pattern subcomponents also revealed that lower maternal intakes of green vegetables and legumes and higher intake of âempty caloriesâ were associated with higher offspring hepatic fat in early childhood. Conclusions: Poorer maternal diet quality during pregnancy was associated with greater offspring susceptibility to hepatic fat in early childhood. Our findings provide insights into potential perinatal targets for the primordial prevention of pediatric NAFLD
The Kafkaesque Pursuit of âWorld Classâ: Audit Culture and the Reputational Arms Race in Academia
Since the 1980s universities have been subjected to a seemingly continuous process of policy reforms designed to make them more economical, efficient and effective, according to yardsticks defined by governments and university managers. The pursuit of âexcellenceâ, âinternational standingâ and âworld classâ status have become key drivers of what Hazelkorn (High Educ Pol 21(2):193â215, 2008) has termed the ârankings arms raceâ that now dominates the world of academia. These policies are changing the mission and meaning of the public university and, more profoundly, the culture of academia itself. While some authors have sought to capture and analyse these trends in terms of âacademic capitalismâ and the âenterprise university modelâ, we suggest they might also be usefully understood theoretically as illustrations of the rise of audit culture in higher education and its effects. Drawing on ethnographic examples from the UK, Denmark and New Zealand, we ask: how are higher education institutions being reconfigured by these new disciplinary regimes of audit? How are ranking and performance indicators changing institutional behaviour and transforming academic subjectivities? What possibilities are there for alternative university futures? And what insights can anthropology offer to address these questions
Imiquimod Does not Affect Shedding of Viable Chlamydiae in a Murine Model of Chlamydia trachomatis Genital Tract Infection
Objective: We postulated that either oral or vaginal administration of the immune response modifier imiquimod would decrease vaginal shedding of Chlamydia trachomatis, mouse pneumonitis strain (MoPn), in a murine model. Methods: Female BALB/c mice were infected intravaginally withC. trachomatis (MoPn) and were administered imiquimod either orally (30 mg/kg) or vaginally (10 ÎŒl of 5%imiquimod cream) prior to infection and every second day after infection for a total of four doses. The course of infection was monitored by collecting cervicalâvaginal swabs and isolation in HeLa 229 cell culture. To determine whether the drug affected T helper type 1 or T helper type 2 immune response polarization, immunoglobulinG(IgG) subclass antibody responses were assessed at day 56 after infection. Results: There was no significant difference in the course of infection when imiquimod-treated mice were compared with sham-treated controls, regardless of whether the drug was administered orally or vaginally. IgG subclass antibody responses, and by extension, T helper type 1 to T helper type 2 immune response polarization, were also unaffected. Conclusions: Imiquimod has no efficacy in controllingC. trachomatis (MoPn) infection in the murine model
The consequences of niche and physiological differentiation of archaeal and bacterial ammonia oxidisers for nitrous oxide emissions
The authors are members of the Nitrous Oxide Research Alliance (NORA), a Marie SkĆodowska-Curie ITN and research project under the EU's seventh framework program (FP7). GN is funded by the AXA Research Fund and CGR by a Royal Society University Research Fellowship (UF150571) and a Natural Environment Research Council (NERC) Standard Grant (NE/K016342/1). The authors would like to thank Dr Robin Walker and the SRUC Craibstone Estate (Aberdeen) for access to the agricultural plots, Dr Alex Douglas for statistical advice and Philipp Schleusner for assisting microcosm construction and sampling.Peer reviewedPublisher PD
Challenging local realism with human choices
A Bell test is a randomized trial that compares experimental observations against the philosophical worldview of local realism 1, in which the properties of the physical world are independent of our observation of them and no signal travels faster than light. A Bell test requires spatially distributed entanglement, fast and high-efficiency detection and unpredictable measurement settings 2,3 . Although technology can satisfy the first two of these requirements 4-7, the use of physical devices to choose settings in a Bell test involves making assumptions about the physics that one aims to test. Bell himself noted this weakness in using physical setting choices and argued that human 'free will' could be used rigorously to ensure unpredictability in Bell tests 8 . Here we report a set of local-realism tests using human choices, which avoids assumptions about predictability in physics. We recruited about 100,000 human participants to play an online video game that incentivizes fast, sustained input of unpredictable selections and illustrates Bell-test methodology 9 . The participants generated 97,347,490 binary choices, which were directed via a scalable web platform to 12 laboratories on five continents, where 13 experiments tested local realism using photons 5,6, single atoms 7, atomic ensembles 10 and superconducting devices 11 . Over a 12-hour period on 30 November 2016, participants worldwide provided a sustained data flow of over 1,000 bits per second to the experiments, which used different human-generated data to choose each measurement setting. The observed correlations strongly contradict local realism and other realistic positions in bipartite and tripartite 12 scenarios. Project outcomes include closing the 'freedom-of-choice loophole' (the possibility that the setting choices are influenced by 'hidden variables' to correlate with the particle properties 13 ), the utilization of video-game methods 14 for rapid collection of human-generated randomness, and the use of networking techniques for global participation in experimental science
Aquarium Nitrification Revisited: Thaumarchaeota Are the Dominant Ammonia Oxidizers in Freshwater Aquarium Biofilters
Ammonia-oxidizing archaea (AOA) outnumber ammonia-oxidizing bacteria (AOB) in many terrestrial and aquatic environments. Although nitrification is the primary function of aquarium biofilters, very few studies have investigated the microorganisms responsible for this process in aquaria. This study used quantitative real-time PCR (qPCR) to quantify the ammonia monooxygenase (amoA) and 16S rRNA genes of Bacteria and Thaumarchaeota in freshwater aquarium biofilters, in addition to assessing the diversity of AOA amoA genes by denaturing gradient gel electrophoresis (DGGE) and clone libraries. AOA were numerically dominant in 23 of 27 freshwater biofilters, and in 12 of these biofilters AOA contributed all detectable amoA genes. Eight saltwater aquaria and two commercial aquarium nitrifier supplements were included for comparison. Both thaumarchaeal and bacterial amoA genes were detected in all saltwater samples, with AOA genes outnumbering AOB genes in five of eight biofilters. Bacterial amoA genes were abundant in both supplements, but thaumarchaeal amoA and 16S rRNA genes could not be detected. For freshwater aquaria, the proportion of amoA genes from AOA relative to AOB was inversely correlated with ammonium concentration. DGGE of AOA amoA genes revealed variable diversity across samples, with nonmetric multidimensional scaling (NMDS) indicating separation of freshwater and saltwater fingerprints. Composite clone libraries of AOA amoA genes revealed distinct freshwater and saltwater clusters, as well as mixed clusters containing both freshwater and saltwater amoA gene sequences. These results reveal insight into commonplace residential biofilters and suggest that aquarium biofilters may represent valuable biofilm microcosms for future studies of AOA ecology
Challenging local realism with human choices
A Bell test is a randomized trial that compares experimental observations
against the philosophical worldview of local realism. A Bell test requires
spatially distributed entanglement, fast and high-efficiency detection and
unpredictable measurement settings. Although technology can satisfy the first
two of these requirements, the use of physical devices to choose settings in a
Bell test involves making assumptions about the physics that one aims to test.
Bell himself noted this weakness in using physical setting choices and argued
that human `free will' could be used rigorously to ensure unpredictability in
Bell tests. Here we report a set of local-realism tests using human choices,
which avoids assumptions about predictability in physics. We recruited about
100,000 human participants to play an online video game that incentivizes fast,
sustained input of unpredictable selections and illustrates Bell-test
methodology. The participants generated 97,347,490 binary choices, which were
directed via a scalable web platform to 12 laboratories on five continents,
where 13 experiments tested local realism using photons, single atoms, atomic
ensembles, and superconducting devices. Over a 12-hour period on 30 November
2016, participants worldwide provided a sustained data flow of over 1,000 bits
per second to the experiments, which used different human-generated data to
choose each measurement setting. The observed correlations strongly contradict
local realism and other realistic positions in bipartite and tripartite
scenarios. Project outcomes include closing the `freedom-of-choice loophole'
(the possibility that the setting choices are influenced by `hidden variables'
to correlate with the particle properties), the utilization of video-game
methods for rapid collection of human generated randomness, and the use of
networking techniques for global participation in experimental science.Comment: This version includes minor changes resulting from reviewer and
editorial input. Abstract shortened to fit within arXiv limit
Structural genomics target selection for the New York consortium on membrane protein structure
The New York Consortium on Membrane Protein Structure (NYCOMPS), a part of the Protein Structure Initiative (PSI) in the USA, has as its mission to establish a high-throughput pipeline for determination of novel integral membrane protein structures. Here we describe our current target selection protocol, which applies structural genomics approaches informed by the collective experience of our team of investigators. We first extract all annotated proteins from our reagent genomes, i.e. the 96 fully sequenced prokaryotic genomes from which we clone DNA. We filter this initial pool of sequences and obtain a list of valid targets. NYCOMPS defines valid targets as those that, among other features, have at least two predicted transmembrane helices, no predicted long disordered regions and, except for community nominated targets, no significant sequence similarity in the predicted transmembrane region to any known protein structure. Proteins that feed our experimental pipeline are selected by defining a protein seed and searching the set of all valid targets for proteins that are likely to have a transmembrane region structurally similar to that of the seed. We require sequence similarity aligning at least half of the predicted transmembrane region of seed and target. Seeds are selected according to their feasibility and/or biological interest, and they include both centrally selected targets and community nominated targets. As of December 2008, over 6,000 targets have been selected and are currently being processed by the experimental pipeline. We discuss how our target list may impact structural coverage of the membrane protein space
- âŠ