2,093 research outputs found

    Drying and cracking mechanisms in a starch slurry

    Get PDF
    Starch-water slurries are commonly used to study fracture dynamics. Drying starch-cakes benefit from being simple, economical, and reproducible systems, and have been used to model desiccation fracture in soils, thin film fracture in paint, and columnar joints in lava. In this paper, the physical properties of starch-water mixtures are studied, and used to interpret and develop a multiphase transport model of drying. Starch-cakes are observed to have a nonlinear elastic modulus, and a desiccation strain that is comparable to that generated by their maximum achievable capillary pressure. It is shown that a large material porosity is divided between pore spaces between starch grains, and pores within starch grains. This division of pore space leads to two distinct drying regimes, controlled by liquid and vapor transport of water, respectively. The relatively unique ability for drying starch to generate columnar fracture patterns is shown to be linked to the unusually strong separation of these two transport mechanisms.Comment: 9 pages, 8 figures [revised in response to reviewer comments

    Drying and cracking mechanisms in a starch slurry

    Get PDF
    Starch-water slurries are commonly used to study fracture dynamics. Drying starch-cakes benefit from being simple, economical, and reproducible systems, and have been used to model desiccation fracture in soils, thin film fracture in paint, and columnar joints in lava. In this paper, the physical properties of starch-water mixtures are studied, and used to interpret and develop a multiphase transport model of drying. Starch-cakes are observed to have a nonlinear elastic modulus, and a desiccation strain that is comparable to that generated by their maximum achievable capillary pressure. It is shown that a large material porosity is divided between pore spaces between starch grains, and pores within starch grains. This division of pore space leads to two distinct drying regimes, controlled by liquid and vapor transport of water, respectively. The relatively unique ability for drying starch to generate columnar fracture patterns is shown to be linked to the unusually strong separation of these two transport mechanisms.Comment: 9 pages, 8 figures [revised in response to reviewer comments

    Hidden Quantum Critical Point in a Ferromagnetic Superconductor

    Full text link
    We consider a coexistence phase of both Ferromagnetism and superconductivity and solve the self-consistent mean-field equations at zero temperature. The superconducting gap is shown to vanish at the Stoner point whereas the magnetization doesn't. This indicates that the para-Ferro quantum critical point becomes a hidden critical point. The effective mass in such a phase gets enhanced whereas the spin wave stiffness is reduced as compared to the pure FM phase. The spin wave stiffness remains finite even at the para-Ferro quantum critical point.Comment: 4 pages, Phys. Rev. B (Rapid) accepte

    An in

    Full text link

    An Experimental Investigation of the Scaling of Columnar Joints

    Get PDF
    Columnar jointing is a fracture pattern common in igneous rocks in which cracks self-organize into a roughly hexagonal arrangement, leaving behind an ordered colonnade. We report observations of columnar jointing in a laboratory analog system, desiccated corn starch slurries. Using measurements of moisture density, evaporation rates, and fracture advance rates as evidence, we suggest an advective-diffusive system is responsible for the rough scaling behavior of columnar joints. This theory explains the order of magnitude difference in scales between jointing in lavas and in starches. We investigated the scaling of average columnar cross-sectional areas due to the evaporation rate, the analog of the cooling rate of igneous columnar joints. We measured column areas in experiments where the evaporation rate depended on lamp height and time, in experiments where the evaporation rate was fixed using feedback methods, and in experiments where gelatin was added to vary the rheology of the starch. Our results suggest that the column area at a particular depth is related to both the current conditions, and hysteretically to the geometry of the pattern at previous depths. We argue that there exists a range of stable column scales allowed for any particular evaporation rate.Comment: 12 pages, 11 figures, for supporting online movies, go to http://www.physics.utoronto.ca/nonlinear/movies/starch_movies.htm

    Coexistence of ferromagnetism and superconductivity

    Full text link
    A comprehensive theory is developed that describes the coexistence of p-wave, spin-triplet superconductivity and itinerant ferromagnetism. It is shown how to use field-theoretic techniques to derive both conventional strong-coupling theory, and analogous gap equations for superconductivity induced by magnetic fluctuations. It is then shown and discussed in detail that the magnetic fluctuations are generically stronger on the ferromagnetic side of the magnetic phase boundary, which substantially enhances the superconducting critical temperature in the ferromagnetic phase over that in the paramagnetic one. The resulting phase diagram is compared with the experimental observations in UGe_2 and ZrZn_2.Comment: 16 pp., REVTeX, 6 eps figs; final version as publishe

    Analytic solution of the fractional advection diffusion equation for the time-of-flight experiment in a finite geometry

    Full text link
    A general analytic solution to the fractional advection diffusion equation is obtained in plane parallel geometry. The result is an infinite series of spatial Fourier modes which decay according to the Mittag-Leffler function, which is cast into a simple closed form expression in Laplace space using the Poisson summation theorem. An analytic expression for the current measured in a time-of-flight experiment is derived, and the sum of the slopes of the two respective time regimes on logarithmic axes is demonstrated to be -2, in agreement with the well known result for a continuous time random walk model. The sensitivity of current and particle number density to variation of experimentally controlled parameters is investigated in general, and the results applied to analyze selected experimental data.Comment: 10 pages, 6 figure

    High-Field Superconductivity at an Electronic Topological Transition in URhGe

    Full text link
    The emergence of superconductivity at high magnetic fields in URhGe is regarded as a paradigm for new state formation approaching a quantum critical point. Until now, a divergence of the quasiparticle mass at the metamagnetic transition was considered essential for superconductivity to survive at magnetic fields above 30 tesla. Here we report the observation of quantum oscillations in URhGe revealing a tiny pocket of heavy quasiparticles that shrinks continuously with increasing magnetic field, and finally disappears at a topological Fermi surface transition close to or at the metamagnetic field. The quasiparticle mass decreases and remains finite, implying that the Fermi velocity vanishes due to the collapse of the Fermi wavevector. This offers a novel explanation for the re-emergence of superconductivity at extreme magnetic fields and makes URhGe the first proven example of a material where magnetic field-tuning of the Fermi surface, rather than quantum criticality alone, governs quantum phase formation.Comment: A revised version has been accepted for publication in Nature Physic

    Photography as an act of collaboration

    Get PDF
    The camera is usually considered to be a passive tool under the control of the operator. This definition implicitly constrains how we use the medium, as well as how we look at – and what we see in – its interpretations of scenes, objects, events and ‘moments’. This text will suggest another way of thinking about – and using – the photographic medium. Based on the evidence of photographic practice (mine and others’), I will suggest that, as a result of the ways in which the medium interprets, juxtaposes and renders the elements in front of the lens, the camera is capable of depicting scenes, events and moments that did not exist and could not have existed until brought into being by the act of photographing them. Accordingly, I will propose that the affective power of many photographs is inseparable from their ‘photographicness’ – and that the photographic medium should therefore be considered as an active collaborator in the creation of uniquely photographic images
    • 

    corecore